Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 404))

Abstract

Low access blood flow has been recognized as the most important cause for access thrombosis and subsequent access failure so that some form of access flow surveillance is recommended in everyday practice. The classic technique to measure flow in physiology is based on indicator dilution as most flow rates are inaccessible to direct measurement. However, extracorporeal blood purification techniques have been designed for the controlled removal and/or delivery of solutes, all of which can be used as indicators to measure selected transport characteristics throughout the intra- and extracorporeal system. It is therefore not surprising that extracorporeal techniques are extremely well suited for access flow monitoring methods based on indicator dilution, also because these techniques can be integrated into the extracorporeal system as part of the purification process and as these procedures have the potential to be fully automated. In this chapter the physiological basis of indicator dilution is briefly summarized with regard to application in hemodialysis considering the limitations as well as the possibilities for integration and automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azar, A.T.: Biofeedback systems and adaptive control hemodialysis treatment. Saudi J. Kidney Dis. Transpl. 19(6), 895–903 (2008)

    Google Scholar 

  2. Azar, A.T.: Effect of dialysate temperature on hemodynamic stability among hemodialysis patients. Saudi J. Kidney Dis. Transpl. 20(4), 596–603 (2009)

    MathSciNet  Google Scholar 

  3. Basile, C., Lomonte, C., Vernaglione, L., et al.: The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol. Dial. Transplant. 23(1), 282–287 (2008)

    Article  Google Scholar 

  4. Bassingthwaighte, J.B., Ackerman, F.H., Wood, E.H.: Applications of the lagged normal density curve as a model for arterial dilution curves. Circ. Res. 18(4), 398–415 (1966)

    Article  Google Scholar 

  5. Berra, Y.: Yogi Berra Sayings (2011), http://www.retrogalaxy.com/sports/yogi-berra.asp

  6. Besarab, A., Lubkowski, T., Frinak, S., et al.: Detection of access strictures and outlet stenoses in vascular accesses Which test is best? ASAIO J. 43(5), M548–M552 (1997)

    Google Scholar 

  7. Bos, W.J., Zietse, R., Wesseling, K.H., Westerhof, N.: Effects of arteriovenous fistulas on cardiac oxygen supply and demand. Kidney Int. 55(5), 2049–2053 (1999)

    Article  Google Scholar 

  8. Bünger, C.M., Kröger, J., Kock, L., et al.: Axillary-axillary interarterial chest loop conduit as an alternative for chronic hemodialysis access. J. Vasc. Surg. 42(2), 290–295 (2005)

    Article  Google Scholar 

  9. Cherrick, G.R., Stein, S.W., Leevy, C.M., Davidson, C.S.: Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J. Clin. Invest. 39, 592–600 (1960)

    Article  Google Scholar 

  10. Chiang, J.C., Teh, L.S., Wu, H.S.: Preliminary experience with patch-enlarged brachial artery for hemodialysis access. ASAIO J. 53(5), 576–581 (2007)

    Article  Google Scholar 

  11. Di Filippo, S., Manzoni, C., Andrulli, S., et al.: How to determine ionic dialysance for the online assessment of delivered dialysis dose. Kidney Int. 59(2), 774–782 (2001)

    Article  Google Scholar 

  12. Eloot, S., Dhondt, A., Hoeben, H., Vanholder, R.: Comparison of different methods to assess fistula flow. Blood Purificat. 30(2), 89–95 (2010)

    Article  Google Scholar 

  13. Fick, A.: Über die Messung des Blutquantums in den Herzventrikeln. Verh. Phys. Med. Ges. Würzburg 2, 16 (1870)

    Google Scholar 

  14. Fox, I.J., Brooker, L.G.S., Heseltine, D.W., Wood, E.H.: A new dye for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation. Circulation 14, 937 (1956)

    Google Scholar 

  15. Gotch, F.A., Buyaki, R., Panlilio, F.M., Folden, T.: Measurement of blood access flow rate during hemodialysis from conductivity dialysance. ASAIO J. 45(3), 139–146 (1999)

    Article  Google Scholar 

  16. Hamilton, W.F., Moore, J.W., Kinsman, J.M., Spurling, R.G.: Simultaneous determination of the pulmonary circulation times in man and of a figure related to the cardiac output. Am. J. Physiol. 84, 338–344 (1928)

    Google Scholar 

  17. Hegglin, R., Rutishauser, W., Kaufmann, G., et al.: Kreislaufdiagnostik mit der Farbstoffverdünnungsmethode. Georg Thieme Verlag, Stuttgart (1962)

    Google Scholar 

  18. Henriques, V.: Über die Verteilung des Blutes vom linken Herzen zwischen dem Herzen und dem übrigen Organismus. Biochemische Zeitschrift 56, 230-248 (1913)

    Google Scholar 

  19. Hinghofer-Szalkay, H.G., Goswami, N., Rössler, A., et al.: Reactive hyperemia in the human liver. Am. J. Physiol. Gastrointest. Liver Physiol. 295(2), 332–337 (2008)

    Article  Google Scholar 

  20. Kaufman, A.M., Krämer, M., Godmere, R.O., et al.: Hemodialysis access recirculation (R) measurement by blood temperature monitoring (BTM). A new technique. J. Am. Soc. Nephrol. 2, 324 (1991)

    Google Scholar 

  21. Kim, H.S., Park, J.W., Chang, J.H., et al.: Early vascular access blood flow as a predictor of long-term vascular access patency in incident hemodialysis patients. J. Korean Med. Sci. 25(5), 728–733 (2010)

    Article  Google Scholar 

  22. King, R.B., Raymond, G.M., Bassingthwaighte, J.B.: Modeling blood flow heterogeneity. Ann. Biomed. Eng. 24(3), 352–372 (1996)

    Article  Google Scholar 

  23. Krisper, P., Martinelli, E., Zierler, E., et al.: More may be less: increasing extracorporeal blood flow in an axillary arterio-arterial access decreases effective clearance. Nephrol. Dial. Transplant. 26(7), 2401–2403 (2011)

    Article  Google Scholar 

  24. Krivitski, N.M.: Novel method to measure access flow during hemodialysis by ultrasound velocity dilution technique. ASAIO J. 41(3), M741–M745 (1995)

    Article  Google Scholar 

  25. Krivitski, N.M., Depner, T.A.: Development of a method for measuring hemodialysis access flow: from idea to robust technology. Semin. Dial. 11(2), 124–130 (1998)

    Article  Google Scholar 

  26. Krivitski, N.M., Schneditz, D.: Arteriovenous vascular access flow measurement: Accuracy and clinical implications. Contrib. Nephrol. 142, 269–284 (2004)

    Article  Google Scholar 

  27. Lassen, N.A., Henriksen, O., Sejrsen, P.: Indicator methods for measurement of organ and tissue blood flow. In: Shepherd, J.T., Abboud, F.M. (eds.) Handbook of Physiology Section 2: The Cardiovascular System, vol. 3, pp. 21–63. American Physiological Society, Bethesda (1983)

    Google Scholar 

  28. Lacson Jr., E., Lazarus, J.M., Panlilio, R., Gotch, F.: Comparison of hemodialysis blood access flow rates using online measurement of conductivity dialysance and ultrasound dilution. Am. J. Kidney Dis. 51(1), 99–106 (2008)

    Article  Google Scholar 

  29. Lindsay, R.M., Huang, S.H., Sternby, J., Hertz, T.: The Measurement of hemodialysis access blood flow by a conductivity step method. Clin. J. Am. Soc. Nephrol. 5(9), 1602–1606 (2010)

    Article  Google Scholar 

  30. Lindsay, R.M., Bradfield, E., Rothera, C., et al.: A comparison of methods for the measurement of hemodialysis access recirculation and access blood flow rate. ASAIO J. 44(1), 62–67 (1998)

    Article  Google Scholar 

  31. Lindsay, R.M., Sternby, J., Olde, B., et al.: Hemodialysis blood access flow rates can be estimated accurately from on-line dialysate urea measurements and the knowledge of effective dialyzer urea clearance. Clin. J. Am. Soc. Nephrol. 1(5), 960–964 (2006)

    Article  Google Scholar 

  32. Lomonte, C., Basile, C.: The role of nephrologist in the management of vascular access. Nephrol. Dial. Transplant. 26(5), 1461–1463 (2011)

    Article  Google Scholar 

  33. Marticorena, R.M., Hunter, J., Macleod, S., et al.: Use of the BioHoleTM device for the creation of tunnel tracks for buttonhole cannulation of fistula for hemodialysis. Hemodial. Int. 15(2), 243–249 (2011)

    Article  Google Scholar 

  34. McCarley, P., Wingard, R.L., Shyr, Y., et al.: Vascular access blood flow monitoring reduces access morbidity and costs. Kidney Int. 60(3), 1164–1172 (2001)

    Article  Google Scholar 

  35. Mercadal, L., Hamani, A., Béné, B., Petitclerc, T.: Determination of access blood flow from ionic dialysance: theory and validation. Kidney Int. 56(4), 1560–1565 (1999)

    Article  Google Scholar 

  36. Novljan, G., Rus, R.R., Koren-Jeverica, A., et al.: Detection of dialysis access induced limb ischemia by infrared thermography in children. T. Ther. Apher. Dial. 15(3), 298–305 (2011)

    Article  Google Scholar 

  37. Polaschegg, H.D.: Automatic, noninvasive intradialytic clearance measurement. Int. J. Artif. Organs 16(4), 185–191 (1993)

    Google Scholar 

  38. Ragg, J.L., Treacy, J.P., Snelling, P., et al.: Confidence limits of arteriovenous fistula flow rate measured by the ’on-line’ thermodilution technique. Nephrol. Dial. Transplant. 18(5), 955–960 (2003)

    Article  Google Scholar 

  39. Rosales, L.M., Schneditz, D., Morris, A.T., et al.: Isothermic hemodialysis and ultrafiltration. Am. J. Kidney Dis. 36(2), 353–361 (2000)

    Article  Google Scholar 

  40. Schneditz, D.: Recirculation, a seemingly simple concept. Nephrol. Dial. Transplant. 13(9), 2191–2193 (1998)

    Article  Google Scholar 

  41. Schneditz, D., Fan, Z., Kaufman, A.M., Levin, N.W.: Measurement of access flow during hemodialysis using the constant infusion approach. ASAIO J. 44(1), 74–81 (1998a)

    Article  Google Scholar 

  42. Schneditz, D., Fan, Z., Kaufman, A.M., Levin, N.W.: Stability of access resistance during hemodialysis. Nephrol. Dial. Transplant. 13(3), 739–744 (1998b)

    Article  Google Scholar 

  43. Schneditz, D., Krivitski, N.M.: Vascular access recirculation measurement and clinical implications. Contrib. Nephrol. 142, 254–268 (2004)

    Article  Google Scholar 

  44. Schneditz, D., Heimel, H., Stabinger, H.: Sound speed, density and total protein concentration of blood. J. Clin. Chem. Clin. Biochem. 27(10), 803–806 (1989a)

    Google Scholar 

  45. Schneditz, D., Kenner, T., Heimel, H., Stabinger, H.: A sound speed sensor for the measurement of total protein concentration in disposable, blood perfused tubes. J. Acoust. Soc. Am. 86(6), 2073–2080 (1989b)

    Article  Google Scholar 

  46. Schneditz, D., Wang, E., Levin, N.W.: Validation of hemodialysis recirculation and access blood flow measured by thermodilution. Nephrol. Dial. Transplant. 14(2), 376–383 (1999)

    Article  Google Scholar 

  47. Schneditz, D., Bachler, I., van der Sande, F.M.: Timing and reproducibility of access flow measurements using extracorporeal temperature gradients. ASAIO J. 53(4), 469–473 (2007a)

    Article  Google Scholar 

  48. Schneditz, D., van der Sande, F.M., Bachler, I., et al.: Access flow measurement by indicator dilution without indicator injection: Effect of switch location. Int. J. Artif. Organs 30(11), 980–986 (2007b)

    Google Scholar 

  49. Schneditz, D., Pogglitsch, H., Horina, J., Binswanger, U.: A blood protein monitor for the continuous measurement of blood volume changes during hemodialysis. Kidney Int. 38(2), 342–346 (1990)

    Article  Google Scholar 

  50. Schneditz, D., Probst, W., Kubista, H., Binswanger, U.: Kontinuierliche Blutvolumenmessung im extrakorporellen Kreislauf mit Ultraschall. Nieren und Hochdruckkrankheiten 20, 649–652 (1991)

    Google Scholar 

  51. Schneditz, D., Mekaroonkamol, P., Haditsch, B., Stauber, R.: Measurement of indocyanine green dye concentration in the extracorporeal circulation. ASAIO J. 51(4), 376–378 (2005)

    Article  Google Scholar 

  52. Schneditz, D., Kaufman, A.M., Polaschegg, H.D., et al.: Cardiopulmonary recirculation during hemodialysis. Kidney Int. 42(6), 1450–1456 (1992)

    Article  Google Scholar 

  53. Shapiro, W., Gurevich, L.: Inadvertent reversal of hemodialysis lines - a possible cause of decreased hemodialysis (HD) efficiency. J. Am. Soc. Nephrol. 8, 173A (1997)

    Google Scholar 

  54. Sherman, R.A., Kapoian, T.: Recirculation, urea disequilibrium, and dialysis efficiency: peripheral arteriovenous versus central venovenous vascular access. Am. J. Kidney Dis. 29(4), 479–489 (1997)

    Article  Google Scholar 

  55. Steil, H., Kaufman, A.M., Morris, A.T., et al. In: vivo verification of an automatic noninvasive system for real time Kt evaluation. ASAIO J. 39(3), M348–M352 (1993)

    Google Scholar 

  56. Stewart, G.N.: The output of the heart. J. Physiol. 22, 159–183 (1897)

    Google Scholar 

  57. Twardowski, Z.J., Van Stone, J.C., Jones, M.E., et al.: Blood recirculation in intravenous catheters for hemodialysis. J. Am. Soc. Nephrol. 3(12), 1978–1981 (1993)

    Google Scholar 

  58. Válek, M., Lopot, F., Polakovic, V.: Arteriovenous fistula, blood flow, cardiac output, and left ventricle load in hemodialysis patients. ASAIO J. 56(3), 200–203 (2010)

    Article  Google Scholar 

  59. van Gemert, M.J., Bruyninckx, C.M., Baggen, M.J.: Shunt haemodynamics and extracorporeal dialysis: an electrical resistance network analysis. Phys. Med. Biol. 29(3), 219–235 (1984)

    Article  Google Scholar 

  60. Vesely, T.M., Gherardini, D., Gleed, R.D., et al.: Use of a catheter-based system to measure blood flow in hemodialysis grafts during angioplasty procedures. J. Vasc. Interv. Radiol. 13(4), 371–378 (2002)

    Article  Google Scholar 

  61. Wang, E., Schneditz, D., Kaufman, A.M., Levin, N.W.: Sensitivity and specificity of the thermodilution technique in detection of access recirculation. Nephron. 85(2), 134–141 (2000)

    Article  Google Scholar 

  62. Wang, E., Schneditz, D., Ronco, C., Levin, N.W.: Surveillance of fistula function by frequent recirculation measurements during high efficiency dialysis. ASAIO J. 48(4), 394–397 (2002)

    Article  Google Scholar 

  63. Whittier, W.L., Mansy, H.A., Rutz, D.R., et al.: Comparison of hemodialysis access flow measurements using flow dilution and in-line dialysance. ASAIO J. 55(4), 369–372 (2009)

    Article  Google Scholar 

  64. Wijnen, E., van der Sande, F.M., Kooman, J.P., et al.: Measurement of hemodialysis vascular access flow using extracorporeal temperature gradients. Kidney Int. 72(6), 736–741 (2007)

    Article  Google Scholar 

  65. Yarar, D., Cheung, A.K., Sakiewicz, P., et al.: Ultrafiltration method for measuring vascular access flow rates during hemodialysis. Kidney Int. 56(3), 1129–1135 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schneditz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneditz, D., Rosales, L.M., Azar, A.T. (2013). Access Flow Monitoring Methods. In: Azar, A. (eds) Modelling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27458-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27458-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27457-2

  • Online ISBN: 978-3-642-27458-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics