Skip to main content

Hanani-Tutte and Monotone Drawings

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6986))

Included in the following conference series:

Abstract

A drawing of a graph is x-monotone if every edge intersects every vertical line at most once and every vertical line contains at most one vertex. Pach and Tóth showed that if a graph has an x-monotone drawing in which every pair of edges crosses an even number of times, then the graph has an x-monotone embedding in which the x-coordinates of all vertices are unchanged. We give a new proof of this result and strengthen it by showing that the conclusion remains true even if adjacent edges are allowed to cross oddly. This answers a question posed by Pach and Tóth. Moreover, we show that an extension of this result for graphs with non-adjacent pairs of edges crossing oddly fails even if there exists only one such pair in a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bienstock, D., Dean, N.: Bounds for rectilinear crossing numbers. J. Graph Theory 17(3), 333–348 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput. Geom. 23(2), 191–206 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Trans. Systems Man Cybernet. 18(6), 1035–1046 (1988, 1989)

    Google Scholar 

  4. Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: On the Characterization of Level Planar Trees by Minimal Patterns. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 69–80. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Chojnacki, C., (Hanani, H.).: Über wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)

    Google Scholar 

  7. Kleitman, D.J.: A note on the parity of the number of crossings of a graph. J. Combinatorial Theory Ser. B 21(1), 88–89 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin, X., Eades, P.: Towards area requirements for drawing hierarchically planar graphs. Theor. Comput. Sci. 292(3), 679–695 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Matoušek, J.: Using the Borsuk-Ulam theorem. Universitext. Springer, Berlin (2003); Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler

    Google Scholar 

  10. Matousek, J., Tancer, M., Wagner, U.: Hardness of embedding simplicial complexes in ℝd. In: Mathieu, C. (ed.) Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, pp. 855–864. SIAM (2009)

    Google Scholar 

  11. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80(2), 225–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1), 39–47 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pach, J., Tóth Monotone, G.: Drawings of planar graphs. ArXiv e-prints (January 2011)

    Google Scholar 

  14. Pach, J., Tóth, G.: Monotone crossing number. In: Graph Drawing (to appear, 2011)

    Google Scholar 

  15. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Combin. Theory Ser. B 97(4), 489–500 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Odd crossing number and crossing number are not the same. Discrete Comput. Geom. 39(1), 442–454 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing independently even crossings. SIAM Journal on Discrete Mathematics 24(2), 379–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schaefer, M.: Hanani-Tutte and related results. To appear in Bolyai Memorial Volume

    Google Scholar 

  19. Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8, 45–53 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D. (2011). Hanani-Tutte and Monotone Drawings. In: Kolman, P., Kratochvíl, J. (eds) Graph-Theoretic Concepts in Computer Science. WG 2011. Lecture Notes in Computer Science, vol 6986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25870-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25870-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25869-5

  • Online ISBN: 978-3-642-25870-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics