Skip to main content

Behavioral Animal Models of Antipsychotic Drug Actions

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 212))

Abstract

Basic research in animals represents a fruitful approach to study the neurobiological basis of brain and behavioral disturbances relevant to neuropsychiatric disease and to establish and evaluate novel pharmacological therapies for their treatment. In the context of schizophrenia, there are models employing specific experimental manipulations developed according to specific pathophysiological or etiological hypotheses. The use of selective lesions in adult animals and the acute administration of psychotomimetic agents are indispensable tools in the elucidation of the contribution of specific brain regions or neurotransmitters to the genesis of a specific symptom or collection of symptoms and enjoy some degrees of predictive validity. However, they may be inaccurate, if not inadequate, in capturing the etiological mechanisms or ontology of the disease needed for a complete understanding of the disease and may be limited in the discovery of novel compounds for the treatment of negative and cognitive symptoms of schizophrenia. Under the prevailing consensus of schizophrenia as a disease of neurodevelopmental origin, we have seen the establishment of neurodevelopmental animal models which aim to identify the etiological processes whereby the brain, following specific triggering events, develops into a “schizophrenia-like brain” over time. Many neurodevelopmental models such as the neonatal ventral hippocampus (vHPC) lesion, methylazoxymethanol (MAM), and prenatal immune activation models can mimic a broad spectrum of behavioral, cognitive, and pharmacological abnormalities directly implicated in schizophrenic disease. These models allow pharmacological screens against multiple and coexisting schizophrenia-related dysfunctions while incorporating the disease-relevant concept of abnormal brain development. The multiplicity of existing models is testimonial to the multifactorial nature of schizophrenia, and there are ample opportunities for their integration. Indeed, one ultimate goal must be to incorporate the successes of distinct models into one unitary account of the complex disorder of schizophrenia and to use such unitary approaches in the further development and evaluation of novel antipsychotic treatment strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F, Pogorelov V, Ladenheim B, Yang C, Krasnova IN, Cadet JL, Pardo C, Mori S, Kamiya A, Vogel MW, Sawa A, Ross CA, Pletnikov MV (2010) Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 68:1172–1181

    Article  PubMed  CAS  Google Scholar 

  • Abekawa T, Ito K, Nakagawa S, Koyama T (2007) Prenatal exposure to an NMDA receptor antagonist, MK-801 reduces density of parvalbumin-immunoreactive GABAergic neurons in the medial prefrontal cortex and enhances phencyclidine-induced hyperlocomotion but not behavioral sensitization to methamphetamine in postpubertal rats. Psychopharmacology (Berl) 192:303–316

    Article  CAS  Google Scholar 

  • Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Krystal J (1997) The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsychiatry Clin Neurosci 9:1–17

    PubMed  CAS  Google Scholar 

  • Aguilar-Valles A, Flores C, Luheshi GN (2010) Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia. PLoS One 5:e10967

    Article  PubMed  CAS  Google Scholar 

  • Aguilar-Valles A, Luheshi GN (2011) Alterations in cognitive function and behavioral response to amphetamine induced by prenatal inflammation are dependent on the stage of pregnancy. Psychoneuroendocrinology 36:634–648

    Article  PubMed  CAS  Google Scholar 

  • Al-Amin HA, Shannon Weickert C, Weinberger DR, Lipska BK (2001) Delayed onset of enhanced MK-801-induced motor hyperactivity after neonatal lesions of the rat ventral hippocampus. Biol Psychiatry 49:528–539

    Article  PubMed  CAS  Google Scholar 

  • Amitai N, Markou A (2010) Disruption of performance in the five-choice serial reaction time task induced by administration of N-methyl-D-aspartate receptor antagonists: relevance to cognitive dysfunction in schizophrenia. Biol Psychiatry 68:5–16

    Article  PubMed  CAS  Google Scholar 

  • Amitai N, Semenova S, Markou A (2007) Cognitive-disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats. Psychopharmacology (Berl) 193:521–537

    Article  CAS  Google Scholar 

  • Andersen JD, Pouzet B (2004) Spatial memory deficits induced by perinatal treatment of rats with PCP and reversal effect of D-serine. Neuropsychopharmacology 29:1080–1090

    Article  PubMed  CAS  Google Scholar 

  • Arguello PA, Gogos JA (2006) Modeling madness in mice: one piece at a time. Neuron 52:179–196

    Article  PubMed  CAS  Google Scholar 

  • Ayhan Y, Abazyan B, Nomura J, Kim R, Ladenheim B, Krasnova IN, Sawa A, Margolis RL, Cadet JL, Mori S, Vogel MW, Ross CA, Pletnikov MV (2011) Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders. Mol Psychiatry 16:293–306

    Article  PubMed  CAS  Google Scholar 

  • Babovic D, O’Tuathaigh CM, O’Connor AM, O’Sullivan GJ, Tighe O, Croke DT, Karayiorgou M, Gogos JA, Cotter D, Waddington JL (2008) Phenotypic characterization of cognition and social behavior in mice with heterozygous versus homozygous deletion of catechol-O-methyltransferase. Neuroscience 155:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Babovic D, O’Tuathaigh CM, O’Sullivan GJ, Clifford JJ, Tighe O, Croke DT, Karayiorgou M, Gogos JA, Cotter D, Waddington JL (2007) Exploratory and habituation phenotype of heterozygous and homozygous COMT knockout mice. Behav Brain Res 183:236–239

    Article  PubMed  CAS  Google Scholar 

  • Baier PC, Blume A, Koch J, Marx A, Fritzer G, Aldenhoff JB, Schiffelholz T (2009) Early postnatal depletion of NMDA receptor development affects behaviour and NMDA receptor expression until later adulthood in rats–a possible model for schizophrenia. Behav Brain Res 205:96–101

    Article  PubMed  CAS  Google Scholar 

  • Ballard TM, Pauly-Evers M, Higgins GA, Ouagazzal AM, Mutel V, Borroni E, Kemp JA, Bluethmann H, Kew JN (2002) Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci 22:6713–6723

    PubMed  CAS  Google Scholar 

  • Barak S (2009) Modeling cholinergic aspects of schizophrenia: focus on the antimuscarinic syndrome. Behav Brain Res 204:335–351

    Article  PubMed  CAS  Google Scholar 

  • Barak S, Weiner I (2011) Putative cognitive enhancers in preclinical models related to schizophrenia: the search for an elusive target. Pharmacol Biochem Behav 99:164–189

    Article  PubMed  CAS  Google Scholar 

  • Barch DM, Braver TS, Carter CS, Poldrack RA, Robbins TW (2009a) CNTRICS final task selection: executive control. Schizophr Bull 35:115–135

    Article  PubMed  Google Scholar 

  • Barch DM, Carter CS, Arnsten A, Buchanan RW, Cohen JD, Geyer M, Green MF, Krystal JH, Nuechterlein K, Robbins T, Silverstein S, Smith EE, Strauss M, Wykes T, Heinssen R (2009b) Selecting paradigms from cognitive neuroscience for translation into use in clinical trials: proceedings of the third CNTRICS meeting. Schizophr Bull 35:109–114

    Article  PubMed  Google Scholar 

  • Barr AM, Lehmann-Masten V, Paulus M, Gainetdinov RR, Caron MG, Geyer MA (2004) The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology 29:221–228

    Article  PubMed  CAS  Google Scholar 

  • Basta-Kaim A, Fijal K, Budziszewska B, Regulska M, Leskiewicz M, Kubera M, Golembiowska K, Lason W, Wedzony K (2011) Prenatal lipopolysaccharide treatment enhances MK-801-induced psychotomimetic effects in rats. Pharmacol Biochem Behav 98:241–249

    Article  PubMed  CAS  Google Scholar 

  • Baumeister AA, Francis JL (2002) Historical development of the dopamine hypothesis of schizophrenia. J Hist Neurosci 11:265–277

    Article  PubMed  Google Scholar 

  • Becker A, Eyles DW, McGrath JJ, Grecksch G (2005) Transient prenatal vitamin D deficiency is associated with subtle alterations in learning and memory functions in adult rats. Behav Brain Res 161:306–312

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Grecksch G (2004) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia Test of predictive validity. Prog Neuropsychopharmacol Biol Psychiatry 28:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Grecksch G, Bernstein HG, Hollt V, Bogerts B (1999) Social behaviour in rats lesioned with ibotenic acid in the hippocampus: quantitative and qualitative analysis. Psychopharmacology (Berl) 144:333–338

    Article  CAS  Google Scholar 

  • Becker A, Peters B, Schroeder H, Mann T, Huether G, Grecksch G (2003) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:687–700

    Article  PubMed  CAS  Google Scholar 

  • Benes FM (2000) Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 31:251–269

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    Article  PubMed  CAS  Google Scholar 

  • Bennay M, Gernert M, Schwabe K, Enkel T, Koch M (2004) Neonatal medial prefrontal cortex lesion enhances the sensitivity of the mesoaccumbal dopamine system. Eur J Neurosci 19:3277–3290

    Article  PubMed  Google Scholar 

  • Bethus I, Lemaire V, Lhomme M, Goodall G (2005) Does prenatal stress affect latent inhibition? It depends on the gender. Behav Brain Res 158:331–338

    Article  PubMed  Google Scholar 

  • Birkett P, Sigmundsson T, Sharma T, Toulopoulou T, Griffiths TD, Reveley A, Murray R (2007) Reaction time and sustained attention in schizophrenia and its genetic predisposition. Schizophr Res 95:76–85

    Article  PubMed  CAS  Google Scholar 

  • Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U (2010) Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology 35:2462–2478

    Article  PubMed  CAS  Google Scholar 

  • Bleuler E (1911) Dementia praecox or the groups of schizophrenias. International University Press, New York, NY

    Google Scholar 

  • Boksa P (2007) Of rats and schizophrenia. J Psychiatry Neurosci 32:8–10

    PubMed  Google Scholar 

  • Boksa P, Krishnamurthy A, Brooks W (1995) Effects of a period of asphyxia during birth on spatial learning in the rat. Pediatr Res 37:489–496

    Article  PubMed  CAS  Google Scholar 

  • Borgwardt SJ, Dickey C, Hulshoff Pol H, Whitford TJ, DeLisi LE (2009) Workshop on defining the significance of progressive brain change in schizophrenia: December 12, 2008 American College of Neuropsychopharmacology (ACNP) all-day satellite, Scottsdale Arizona. The rapporteurs’ report. Schizophr Res 112:32–45

    Article  PubMed  Google Scholar 

  • Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26:204–215

    Article  PubMed  CAS  Google Scholar 

  • Bowie CR, Harvey PD (2006) Schizophrenia from a neuropsychiatric perspective. Mt Sinai J Med 73:993–998

    PubMed  Google Scholar 

  • Brady AM, Saul RD, Wiest MK (2010) Selective deficits in spatial working memory in the neonatal ventral hippocampal lesion rat model of schizophrenia. Neuropharmacology 59:605–611

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Brake WG, Flores G, Francis D, Meaney MJ, Srivastava LK, Gratton A (2000) Enhanced nucleus accumbens dopamine and plasma corticosterone stress responses in adult rats with neonatal excitotoxic lesions to the medial prefrontal cortex. Neuroscience 96:687–695

    Article  PubMed  CAS  Google Scholar 

  • Brioni JD, Keller EA, Levin LE, Cordoba N, Orsingher OA (1986) Reactivity to amphetamine in perinatally undernourished rats: behavioral and neurochemical correlates. Pharmacol Biochem Behav 24:449–454

    Article  PubMed  CAS  Google Scholar 

  • Brody SA, Dulawa SC, Conquet F, Geyer MA (2004) Assessment of a prepulse inhibition deficit in a mutant mouse lacking mGlu5 receptors. Mol Psychiatry 9:35–41

    Article  PubMed  CAS  Google Scholar 

  • Brown AS (2006) Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 32:200–202

    Article  PubMed  Google Scholar 

  • Brown AS (2008) The risk for schizophrenia from childhood and adult infections. Am J Psychiatry 165:7–10

    Article  PubMed  Google Scholar 

  • Brown AS (2011) Further evidence of infectious insults in the pathogenesis and pathophysiology of schizophrenia. Am J Psychiatry 168:764–766

    Article  PubMed  Google Scholar 

  • Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280

    Article  PubMed  Google Scholar 

  • Brown AS, Susser ES (2008) Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull 34:1054–1063

    Article  PubMed  Google Scholar 

  • Brown VJ, Bowman EM (2002) Rodent models of prefrontal cortical function. Trends Neurosci 25:340–343

    Article  PubMed  CAS  Google Scholar 

  • Buchanan RW, Freedman R, Javitt DC, Abi-Dargham A, Lieberman JA (2007) Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr Bull 33:1120–1130

    Article  PubMed  Google Scholar 

  • Burne TH, Becker A, Brown J, Eyles DW, Mackay-Sim A, McGrath JJ (2004) Transient prenatal Vitamin D deficiency is associated with hyperlocomotion in adult rats. Behav Brain Res 154:549–555

    Article  PubMed  CAS  Google Scholar 

  • Burne TH, O’Loan J, McGrath JJ, Eyles DW (2006) Hyperlocomotion associated with transient prenatal vitamin D deficiency is ameliorated by acute restraint. Behav Brain Res 174:119–124

    Article  PubMed  CAS  Google Scholar 

  • Burton C, Lovic V, Fleming AS (2006) Early adversity alters attention and locomotion in adult Sprague-Dawley rats. Behav Neurosci 120:665–675

    Article  PubMed  Google Scholar 

  • Cannon M, Jones PB, Murray RM (2002) Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 159:1080–1092

    Article  PubMed  Google Scholar 

  • Cardon M, Ron-Harel N, Cohen H, Lewitus GM, Schwartz M (2010) Dysregulation of kisspeptin and neurogenesis at adolescence link inborn immune deficits to the late onset of abnormal sensorimotor gating in congenital psychological disorders. Mol Psychiatry 15:415–425

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  PubMed  CAS  Google Scholar 

  • Castagne V, Moser PC, Porsolt RD (2009) Preclinical behavioral models for predicting antipsychotic activity. Adv Pharmacol 57:381–418

    Article  PubMed  CAS  Google Scholar 

  • Castner SA, Goldman-Rakic PS, Williams GV (2004) Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology (Berl) 174:111–125

    Article  CAS  Google Scholar 

  • Ceaser AE, Goldberg TE, Egan MF, McMahon RP, Weinberger DR, Gold JM (2008) Set-shifting ability and schizophrenia: a marker of clinical illness or an intermediate phenotype? Biol Psychiatry 64:782–788

    Article  PubMed  Google Scholar 

  • Chatterjee M, Ganguly S, Srivastava M, Palit G (2011) Effect of ‘chronic’ versus ‘acute’ ketamine administration and its ‘withdrawal’ effect on behavioural alterations in mice: implications for experimental psychosis. Behav Brain Res 216:247–254

    Article  PubMed  CAS  Google Scholar 

  • Cirulli F, Berry A, Alleva E (2003) Early disruption of the mother-infant relationship: effects on brain plasticity and implications for psychopathology. Neurosci Biobehav Rev 27:73–82

    Article  PubMed  CAS  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    Article  PubMed  CAS  Google Scholar 

  • Cook L, Tam SW, Rohrbach KW (1992) DuP 734 [1-(cyclopropylmethyl)-4-(2’(4”-fluorophenyl)-2’- oxoethyl)piperidine HBr], a potential antipsychotic agent: preclinical behavioral effects. J Pharmacol Exp Ther 263:1159–1166

    PubMed  CAS  Google Scholar 

  • Coyle JT, Tsai G, Goff D (2003) Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann N Y Acad Sci 1003:318–327

    Article  PubMed  CAS  Google Scholar 

  • Coyle P, Tran N, Fung JN, Summers BL, Rofe AM (2009) Maternal dietary zinc supplementation prevents aberrant behaviour in an object recognition task in mice offspring exposed to LPS in early pregnancy. Behav Brain Res 197:210–218

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (2007) Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol 17:448–459

    Article  PubMed  Google Scholar 

  • Crawley JN (2008) Behavioral phenotyping strategies for mutant mice. Neuron 57:809–818

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Iversen SD (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 83:419–436

    Article  PubMed  CAS  Google Scholar 

  • Crider A (1997) Perseveration in schizophrenia. Schizophr Bull 23:63–74

    Article  PubMed  CAS  Google Scholar 

  • Cronbach LJ, Meehl PE (1955) Construct validity in psychological tests. Psychol Bull 52:281–302

    Article  PubMed  CAS  Google Scholar 

  • Daenen EW, Van der Heyden JA, Kruse CG, Wolterink G, Van Ree JM (2001) Adaptation and habituation to an open field and responses to various stressful events in animals with neonatal lesions in the amygdala or ventral hippocampus. Brain Res 918:153–165

    Article  PubMed  CAS  Google Scholar 

  • Daenen EW, Wolterink G, Van Der Heyden JA, Kruse CG, Van Ree JM (2003) Neonatal lesions in the amygdala or ventral hippocampus disrupt prepulse inhibition of the acoustic startle response; implications for an animal model of neurodevelopmental disorders like schizophrenia. Eur Neuropsychopharmacol 13:187–197

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  • Deakin JF, Simpson MD (1997) A two-process theory of schizophrenia: evidence from studies in post-mortem brain. J Psychiatr Res 31:277–295

    Article  PubMed  CAS  Google Scholar 

  • Deminiere JM, Piazza PV, Guegan G, Abrous N, Maccari S, Le Moal M, Simon H (1992) Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Res 586:135–139

    Article  PubMed  CAS  Google Scholar 

  • Depoortere R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vige X, Biton B, Steinberg R, Francon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrie P, Scatton B (2005) Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30:1963–1985

    Article  PubMed  CAS  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1997) Potentiation of prepulse inhibition of the startle reflex in rats: pharmacological evaluation of the procedure as a model for detecting antipsychotic activity. Psychopharmacology (Berl) 132:366–374

    Article  CAS  Google Scholar 

  • Desbonnet L, Waddington JL, O’Tuathaigh CM (2009) Mutant models for genes associated with schizophrenia. Biochem Soc Trans 37:308–312

    Article  PubMed  CAS  Google Scholar 

  • Diaz R, Fuxe K, Ogren SO (1997) Prenatal corticosterone treatment induces long-term changes in spontaneous and apomorphine-mediated motor activity in male and female rats. Neuroscience 81:129–140

    Article  PubMed  CAS  Google Scholar 

  • Diaz R, Ogren SO, Blum M, Fuxe K (1995) Prenatal corticosterone increases spontaneous and d-amphetamine induced locomotor activity and brain dopamine metabolism in prepubertal male and female rats. Neuroscience 66:467–473

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Moy SS, Lieberman JA, Koller BH (2006) Effects of haloperidol, clozapine, and quetiapine on sensorimotor gating in a genetic model of reduced NMDA receptor function. Psychopharmacology (Berl) 184:190–200

    Article  CAS  Google Scholar 

  • Eastwood SL, Lyon L, George L, Andrieux A, Job D, Harrison PJ (2007) Altered expression of synaptic protein mRNAs in STOP (MAP6) mutant mice. J Psychopharmacol 21:635–644

    Article  PubMed  CAS  Google Scholar 

  • Eells JB, Misler JA, Nikodem VM (2006) Early postnatal isolation reduces dopamine levels, elevates dopamine turnover and specifically disrupts prepulse inhibition in Nurr1-null heterozygous mice. Neuroscience 140:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Egerton A, Reid L, McKerchar CE, Morris BJ, Pratt JA (2005) Impairment in perceptual attentional set-shifting following PCP administration: a rodent model of set-shifting deficits in schizophrenia. Psychopharmacology (Berl) 179:77–84

    Article  CAS  Google Scholar 

  • El-Khodor BF, Boksa P (1998) Birth insult increases amphetamine-induced behavioral responses in the adult rat. Neuroscience 87:893–904

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Cools AR (2000a) Animal models for the negative symptoms of schizophrenia. Behav Pharmacol 11:223–233

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Cools AR (2000b) The long-term effects of maternal deprivation depend on the genetic background. Neuropsychopharmacology 23:99–106

    Article  PubMed  CAS  Google Scholar 

  • Elvevag B, Weinberger DR, Suter JC, Goldberg TE (2000) Continuous performance test and schizophrenia: a test of stimulus-response compatibility, working memory, response readiness, or none of the above? Am J Psychiatry 157:772–780

    Article  PubMed  CAS  Google Scholar 

  • Enomoto T, Floresco SB (2009) Disruptions in spatial working memory, but not short-term memory, induced by repeated ketamine exposure. Prog Neuropsychopharmacol Biol Psychiatry 33:668–675

    Article  PubMed  CAS  Google Scholar 

  • Eyles DW, Rogers F, Buller K, McGrath JJ, Ko P, French K, Burne TH (2006) Developmental vitamin D (DVD) deficiency in the rat alters adult behaviour independently of HPA function. Psychoneuroendocrinology 31:958–964

    Article  PubMed  CAS  Google Scholar 

  • Featherstone RE, Kapur S, Fletcher PJ (2007a) The amphetamine-induced sensitized state as a model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:1556–1571

    Article  PubMed  CAS  Google Scholar 

  • Featherstone RE, Rizos Z, Kapur S, Fletcher PJ (2008) A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res 189:170–179

    Article  PubMed  CAS  Google Scholar 

  • Featherstone RE, Rizos Z, Nobrega JN, Kapur S, Fletcher PJ (2007b) Gestational methylazoxymethanol acetate treatment impairs select cognitive functions: parallels to schizophrenia. Neuropsychopharmacology 32:483–492

    Article  PubMed  CAS  Google Scholar 

  • Feifel D, Shilling PD (2010) Promise and pitfalls of animal models of schizophrenia. Curr Psychiatry Rep 12:327–334

    Article  PubMed  Google Scholar 

  • Feldon J, Weiner I (1992) From an animal model of an attentional deficit towards new insights into the pathophysiology of schizophrenia. J Psychiatr Res 26:345–366

    Article  PubMed  CAS  Google Scholar 

  • Flagstad P, Glenthoj BY, Didriksen M (2005) Cognitive deficits caused by late gestational disruption of neurogenesis in rats: a preclinical model of schizophrenia. Neuropsychopharmacology 30:250–260

    Article  PubMed  Google Scholar 

  • Flagstad P, Mork A, Glenthoj BY, van Beek J, Michael-Titus AT, Didriksen M (2004) Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 29:2052–2064

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Tenn CC, Rizos Z, Lovic V, Kapur S (2005) Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology (Berl) 183:190–200

    Article  CAS  Google Scholar 

  • Fletcher PJ, Tenn CC, Sinyard J, Rizos Z, Kapur S (2007) A sensitizing regimen of amphetamine impairs visual attention in the 5-choice serial reaction time test: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Neuropsychopharmacology 32:1122–1132

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Geyer MA, Gold LH, Grace AA (2005) Developing predictive animal models and establishing a preclinical trials network for assessing treatment effects on cognition in schizophrenia. Schizophr Bull 31:888–894

    Article  PubMed  Google Scholar 

  • Fortier ME, Joober R, Luheshi GN, Boksa P (2004) Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. J Psychiatr Res 38:335–345

    Article  PubMed  Google Scholar 

  • Fortier ME, Luheshi GN, Boksa P (2007) Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy. Behav Brain Res 181:270–277

    Article  PubMed  Google Scholar 

  • Foussias G, Remington G (2010) Antipsychotics and schizophrenia: from efficacy and effectiveness to clinical decision-making. Can J Psychiatry 55:117–125

    PubMed  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    Article  PubMed  CAS  Google Scholar 

  • Gal G, Joel D, Gusak O, Feldon J, Weiner I (1997) The effects of electrolytic lesion to the shell subterritory of the nucleus accumbens on delayed non-matching-to-sample and four-arm baited eight-arm radial-maze tasks. Behav Neurosci 111:92–103

    Article  PubMed  CAS  Google Scholar 

  • Garner JP, Thogerson CM, Wurbel H, Murray JD, Mench JA (2006) Animal neuropsychology: validation of the Intra-Dimensional Extra-Dimensional set shifting task for mice. Behav Brain Res 173:53–61

    Article  PubMed  Google Scholar 

  • Gerdjikov TV, Rudolph U, Keist R, Mohler H, Feldon J, Yee BK (2008) Hippocampal alpha 5 subunit-containing GABA A receptors are involved in the development of the latent inhibition effect. Neurobiol Learn Mem 89:87–94

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA (2006) The family of sensorimotor gating disorders: comorbidities or diagnostic overlaps? Neurotox Res 10:211–220

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA (2008) Developing translational animal models for symptoms of schizophrenia or bipolar mania. Neurotox Res 14:71–78

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Gogos JA, Gerber DJ (2006) Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends Pharmacol Sci 27:226–233

    Article  PubMed  CAS  Google Scholar 

  • Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, Karayiorgou M (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95:9991–9996

    Article  PubMed  CAS  Google Scholar 

  • Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M (2005) Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology 48:903–917

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–357

    PubMed  CAS  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  • Gould TD, Gottesman II (2006) Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 5:113–119

    Article  PubMed  CAS  Google Scholar 

  • Gray L, van den Buuse M, Scarr E, Dean B, Hannan AJ (2009) Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: association with N-methyl-D-aspartic acid receptor up-regulation. Int J Neuropsychopharmacol 12:45–60

    Article  PubMed  CAS  Google Scholar 

  • Grecksch G, Bernstein HG, Becker A, Hollt V, Bogerts B (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacology 20:525–532

    Article  PubMed  CAS  Google Scholar 

  • Green MF, Nuechterlein KH, Gold JM, Barch DM, Cohen J, Essock S, Fenton WS, Frese F, Goldberg TE, Heaton RK, Keefe RS, Kern RS, Kraemer H, Stover E, Weinberger DR, Zalcman S, Marder SR (2004) Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry 56:301–307

    Article  PubMed  Google Scholar 

  • Gue M, Bravard A, Meunier J, Veyrier R, Gaillet S, Recasens M, Maurice T (2004) Sex differences in learning deficits induced by prenatal stress in juvenile rats. Behav Brain Res 150:149–157

    Article  PubMed  Google Scholar 

  • Guo X, Hamilton PJ, Reish NJ, Sweatt JD, Miller CA, Rumbaugh G (2009) Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia. Neuropsychopharmacology 34:1659–1672

    Article  PubMed  CAS  Google Scholar 

  • Hanlon FM, Sutherland RJ (2000) Changes in adult brain and behavior caused by neonatal limbic damage: implications for the etiology of schizophrenia. Behav Brain Res 107:71–83

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624

    Article  PubMed  Google Scholar 

  • Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174:151–162

    Article  CAS  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68

    Article  PubMed  CAS  Google Scholar 

  • Hauser J, Feldon J, Pryce CR (2006) Prenatal dexamethasone exposure, postnatal development, and adulthood prepulse inhibition and latent inhibition in Wistar rats. Behav Brain Res 175:51–61

    Article  PubMed  CAS  Google Scholar 

  • Hauser J, Feldon J, Pryce CR (2009) Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA axis in adult Wistar rats. Horm Behav 56:364–375

    Article  PubMed  CAS  Google Scholar 

  • Hauser J, Rudolph U, Keist R, Mohler H, Feldon J, Yee BK (2005) Hippocampal alpha5 subunit-containing GABAA receptors modulate the expression of prepulse inhibition. Mol Psychiatry 10:201–207

    Article  PubMed  CAS  Google Scholar 

  • Hazane F, Krebs MO, Jay TM, Le Pen G (2009) Behavioral perturbations after prenatal neurogenesis disturbance in female rat. Neurotox Res 15:311–320

    Article  PubMed  Google Scholar 

  • Henry C, Guegant G, Cador M, Arnauld E, Arsaut J, Le Moal M, Demotes-Mainard J (1995) Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Res 685:179–186

    Article  PubMed  CAS  Google Scholar 

  • Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andrade M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 104:14501–14506

    Article  PubMed  CAS  Google Scholar 

  • Hill SK, Bishop JR, Palumbo D, Sweeney JA (2010) Effect of second-generation antipsychotics on cognition: current issues and future challenges. Expert Rev Neurother 10:43–57

    Article  PubMed  CAS  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  Google Scholar 

  • Hughes B (2009) Novel consortium to address shortfall in innovative medicines for psychiatric disorders. Nat Rev Drug Discov 8:523–524

    Article  PubMed  CAS  Google Scholar 

  • Huotari M, Santha M, Lucas LR, Karayiorgou M, Gogos JA, Mannisto PT (2002) Effect of dopamine uptake inhibition on brain catecholamine levels and locomotion in catechol-O-methyltransferase-disrupted mice. J Pharmacol Exp Ther 303:1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Weiner I, Feldon J (1997) Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia. Behav Brain Res 85:187–201

    Article  PubMed  CAS  Google Scholar 

  • Jones SH, Gray JA, Hemsley DR (1992) Loss of the Kamin blocking effect in acute but not chronic schizophrenics. Biol Psychiatry 32:739–755

    Article  PubMed  CAS  Google Scholar 

  • Jongen-Rêlo AL, Leng A, Luber M, Pothuizen HH, Weber L, Feldon J (2004) The prenatal methylazoxymethanol acetate treatment: a neurodevelopmental animal model for schizophrenia? Behav Brain Res 149:159–181

    Article  PubMed  CAS  Google Scholar 

  • Kantrowitz JT, Javitt DC (2010) Thinking glutamatergically: changing concepts of schizophrenia based upon changing neurochemical models. Clin Schizophr Relat Psychoses 4:189–200

    Article  PubMed  Google Scholar 

  • Karlsson RM, Tanaka K, Heilig M, Holmes A (2008) Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol Psychiatry 64:810–814

    Article  PubMed  CAS  Google Scholar 

  • Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34:1578–1589

    Article  PubMed  CAS  Google Scholar 

  • Kellendonk C, Simpson EH, Kandel ER (2009) Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci 32:347–358

    Article  PubMed  CAS  Google Scholar 

  • Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER (2006) Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603–615

    Article  PubMed  CAS  Google Scholar 

  • Kesby JP, Burne TH, McGrath JJ, Eyles DW (2006) Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: an animal model of schizophrenia. Biol Psychiatry 60:591–596

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Zerwas S, Trace SE, Sullivan PF (2011) Schizophrenia genetics: where next? Schizophr Bull 37:456–463

    Article  PubMed  Google Scholar 

  • Kodsi MH, Swerdlow NR (1994) Quinolinic acid lesions of the ventral striatum reduce sensorimotor gating of acoustic startle in rats. Brain Res 643:59–65

    Article  PubMed  CAS  Google Scholar 

  • Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156:251–261

    Article  PubMed  Google Scholar 

  • Koike H, Arguello PA, Kvajo M, Karayiorgou M, Gogos JA (2006) Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci USA 103:3693–3697

    Article  PubMed  CAS  Google Scholar 

  • Kokkinidis L, Anisman H (1981) Amphetamine psychosis and schizophrenia: a dual model. Neurosci Biobehav Rev 5:449–461

    Article  PubMed  CAS  Google Scholar 

  • Kraepelin E (1919) Dementia praecox and paraphrenia. Kreiger, New York, NY

    Google Scholar 

  • Krueger DD, Howell JL, Hebert BF, Olausson P, Taylor JR, Nairn AC (2006) Assessment of cognitive function in the heterozygous reeler mouse. Psychopharmacology (Berl) 189:95–104

    Article  CAS  Google Scholar 

  • Kvajo M, McKellar H, Arguello PA, Drew LJ, Moore H, MacDermott AB, Karayiorgou M, Gogos JA (2008) A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA 105:7076–7081

    Article  PubMed  CAS  Google Scholar 

  • Kvajo M, McKellar H, Gogos JA (2012) Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience 211:136–164

    Article  PubMed  CAS  Google Scholar 

  • Labrie V, Lipina T, Roder JC (2008) Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology (Berl) 200:217–230

    Article  CAS  Google Scholar 

  • Lacroix L, Broersen LM, Weiner I, Feldon J (1998) The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience 84:431–442

    Article  PubMed  CAS  Google Scholar 

  • Lacroix L, Spinelli S, White W, Feldon J (2000) The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience 97:459–468

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P (1984) Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson’s disease. Can J Neurol Sci 11:160–165

    PubMed  CAS  Google Scholar 

  • Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 31:371–384

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13:358–371

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003:138–158

    Article  PubMed  CAS  Google Scholar 

  • Laurent A, Biloa-Tang M, Bougerol T, Duly D, Anchisi AM, Bosson JL, Pellat J, d’Amato T, Dalery J (2000) Executive/attentional performance and measures of schizotypy in patients with schizophrenia and in their nonpsychotic first-degree relatives. Schizophr Res 46:269–283

    Article  PubMed  CAS  Google Scholar 

  • Laurent A, Saoud M, Bougerol T, d’Amato T, Anchisi AM, Biloa-Tang M, Dalery J, Rochet T (1999) Attentional deficits in patients with schizophrenia and in their non-psychotic first-degree relatives. Psychiatry Res 89:147–159

    Article  PubMed  CAS  Google Scholar 

  • Laviola G, Ognibene E, Romano E, Adriani W, Keller F (2009) Gene-environment interaction during early development in the heterozygous reeler mouse: clues for modelling of major neurobehavioral syndromes. Neurosci Biobehav Rev 33:560–572

    Article  PubMed  CAS  Google Scholar 

  • Le Pen G, Gourevitch R, Hazane F, Hoareau C, Jay TM, Krebs MO (2006) Peri-pubertal maturation after developmental disturbance: a model for psychosis onset in the rat. Neuroscience 143:395–405

    Article  PubMed  CAS  Google Scholar 

  • Le Pen G, Grottick AJ, Higgins GA, Moreau JL (2003) Phencyclidine exacerbates attentional deficits in a neurodevelopmental rat model of schizophrenia. Neuropsychopharmacology 28:1799–1809

    Article  PubMed  CAS  Google Scholar 

  • Le Pen G, Moreau JL (2002) Disruption of prepulse inhibition of startle reflex in a neurodevelopmental model of schizophrenia: reversal by clozapine, olanzapine and risperidone but not by haloperidol. Neuropsychopharmacology 27:1–11

    Article  PubMed  Google Scholar 

  • Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI (2005) Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology 30:1883–1894

    Article  PubMed  CAS  Google Scholar 

  • Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI (2007) Prenatal stress generates deficits in rat social behavior: reversal by oxytocin. Brain Res 1156:152–167

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Stohr T, Feldon J (2000) Long-term effects of prenatal stress experiences and postnatal maternal separation on emotionality and attentional processes. Behav Brain Res 107:133–144

    Article  PubMed  CAS  Google Scholar 

  • Leng A, Jongen-Rêlo AL, Pothuizen HH, Feldon J (2005) Effects of prenatal methylazoxymethanol acetate (MAM) treatment in rats on water maze performance. Behav Brain Res 161:291–298

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP (1999) Gene transfer to the brain: emerging therapeutic strategy in psychiatry? Biol Psychiatry 45:247–253

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 46:616–626

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Cheung C, Wei R, Hui ES, Feldon J, Meyer U, Chung S, Chua SE, Sham PC, Wu EX, McAlonan GM (2009) Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model. PLoS One 4:e6354

    Article  PubMed  CAS  Google Scholar 

  • Li W, Zhou Y, Jentsch JD, Brown RA, Tian X, Ehninger D, Hennah W, Peltonen L, Lonnqvist J, Huttunen MO, Kaprio J, Trachtenberg JT, Silva AJ, Cannon TD (2007) Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci USA 104:18280–18285

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl) 91:415–433

    Article  CAS  Google Scholar 

  • Lieberman JA, Sheitman BB, Kinon BJ (1997) Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17:205–229

    Article  PubMed  CAS  Google Scholar 

  • Lillrank SM, Lipska BK, Weinberger DR (1995) Neurodevelopmental animal models of schizophrenia. Clin Neurosci 3:98–104

    PubMed  CAS  Google Scholar 

  • Lipina T, Weiss K, Roder J (2007) The ampakine CX546 restores the prepulse inhibition and latent inhibition deficits in mGluR5-deficient mice. Neuropsychopharmacology 32:745–756

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK (2004) Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci 29:282–286

    PubMed  Google Scholar 

  • Lipska BK, al-Amin HA, Weinberger DR (1998) Excitotoxic lesions of the rat medial prefrontal cortex. Effects on abnormal behaviors associated with neonatal hippocampal damage. Neuropsychopharmacology 19:451–464

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B (2002) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27:47–54

    Article  PubMed  Google Scholar 

  • Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75

    PubMed  CAS  Google Scholar 

  • Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 122:35–43

    Article  CAS  Google Scholar 

  • Lipska BK, Weinberger DR (1994) Subchronic treatment with haloperidol and clozapine in rats with neonatal excitotoxic hippocampal damage. Neuropsychopharmacology 10:199–205

    PubMed  CAS  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK, Weinberger DR (2002) A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus. Neurotox Res 4:469–475

    Article  PubMed  Google Scholar 

  • Lodge DJ, Grace AA (2009) Gestational methylazoxymethanol acetate administration: a developmental disruption model of schizophrenia. Behav Brain Res 204:306–312

    Article  PubMed  CAS  Google Scholar 

  • Low NC, Hardy J (2007) What is a schizophrenic mouse? Neuron 54:348–349

    Article  PubMed  CAS  Google Scholar 

  • Lubow RE (2005) Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophr Bull 31:139–153

    Article  PubMed  CAS  Google Scholar 

  • Makinodan M, Tatsumi K, Manabe T, Yamauchi T, Makinodan E, Matsuyoshi H, Shimoda S, Noriyama Y, Kishimoto T, Wanaka A (2008) Maternal immune activation in mice delays myelination and axonal development in the hippocampus of the offspring. J Neurosci Res 86:2190–2200

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2:299–308

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA, Braff DL (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology (Berl) 94:507–514

    Article  CAS  Google Scholar 

  • Marder SR (2006) Initiatives to promote the discovery of drugs to improve cognitive function in severe mental illness. J Clin Psychiatry 67:e03

    Article  PubMed  Google Scholar 

  • Marighetto A, Yee BK, Rawlins JN (1998) The effects of cytotoxic entorhinal lesions and electrolytic medial septal lesions on the acquisition and retention of a spatial working memory task. Exp Brain Res 119:517–528

    Article  PubMed  CAS  Google Scholar 

  • Markham JA, Taylor AR, Taylor SB, Bell DB, Koenig JI (2010) Characterization of the cognitive impairments induced by prenatal exposure to stress in the rat. Front Behav Neurosci 4:173

    Article  PubMed  Google Scholar 

  • Markou A, Chiamulera C, Geyer MA, Tricklebank M, Steckler T (2009) Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34:74–89

    Article  PubMed  CAS  Google Scholar 

  • Martin LF, Freedman R (2007) Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol 78:225–246

    Article  PubMed  CAS  Google Scholar 

  • McDonald C, Murray RM (2000) Early and late environmental risk factors for schizophrenia. Brain Res Brain Res Rev 31:130–137

    Article  PubMed  CAS  Google Scholar 

  • McGlashan TH, Fenton WS (1992) The positive-negative distinction in schizophrenia. Review of natural history validators. Arch Gen Psychiatry 49:63–72

    Article  PubMed  CAS  Google Scholar 

  • Meunier J, Gue M, Recasens M, Maurice T (2004) Attenuation by a sigma1 (sigma1) receptor agonist of the learning and memory deficits induced by a prenatal restraint stress in juvenile rats. Br J Pharmacol 142:689–700

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Engler A, Weber L, Schedlowski M, Feldon J (2008a) Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience 154:701–709

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Feldon J (2010) Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 90:285–326

    Article  PubMed  Google Scholar 

  • Meyer U, Feldon J, Schedlowski M, Yee BK (2005) Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 29:913–947

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Feldon J, Schedlowski M, Yee BK (2006a) Immunological stress at the maternal-foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav Immun 20:378–388

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Knuesel I, Nyffeler M, Feldon J (2010) Chronic clozapine treatment improves prenatal infection-induced working memory deficits without influencing adult hippocampal neurogenesis. Psychopharmacology (Berl) 208:531–543

    Article  CAS  Google Scholar 

  • Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J (2006b) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26:4752–4762

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Nyffeler M, Schwendener S, Knuesel I, Yee BK, Feldon J (2008b) Relative prenatal and postnatal maternal contributions to schizophrenia-related neurochemical dysfunction after in utero immune challenge. Neuropsychopharmacology 33:441–456

    Article  PubMed  Google Scholar 

  • Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J (2008c) Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun 22:469–486

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Schwendener S, Feldon J, Yee BK (2006c) Prenatal and postnatal maternal contributions in the infection model of schizophrenia. Exp Brain Res 173:243–257

    Article  PubMed  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    Article  PubMed  CAS  Google Scholar 

  • Möller HJ (2004) Course and long-term treatment of schizophrenic psychoses. Pharmacopsychiatry 37(Suppl 2):126–135

    Article  PubMed  Google Scholar 

  • Moore H (2010) The role of rodent models in the discovery of new treatments for schizophrenia: updating our strategy. Schizophr Bull 36:1066–1072

    Article  PubMed  Google Scholar 

  • Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA (2006) A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry 60:253–264

    Article  PubMed  CAS  Google Scholar 

  • Moran PM, Al-Uzri MM, Watson J, Reveley MA (2003) Reduced Kamin blocking in non paranoid schizophrenia: associations with schizotypy. J Psychiatr Res 37:155–163

    Article  PubMed  CAS  Google Scholar 

  • Moran PM, Owen L, Crookes AE, Al-Uzri MM, Reveley MA (2008) Abnormal prediction error is associated with negative and depressive symptoms in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 32:116–123

    Article  PubMed  CAS  Google Scholar 

  • Moreno JL, Kurita M, Holloway T, Lopez J, Cadagan R, Martinez-Sobrido L, Garcia-Sastre A, Gonzalez-Maeso J (2011) Maternal influenza viral infection causes schizophrenia-like alterations of 5-HTA and mGlu receptors in the adult offspring. J Neurosci 31:1863–1872

    Article  PubMed  CAS  Google Scholar 

  • Morrens M, Hulstijn W, Lewi PJ, De Hert M, Sabbe BG (2006) Stereotypy in schizophrenia. Schizophr Res 84:397–404

    Article  PubMed  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Brain Res Rev 33:275–307

    Article  PubMed  CAS  Google Scholar 

  • Mouri A, Noda Y, Enomoto T, Nabeshima T (2007) Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int 51:173–184

    Article  PubMed  CAS  Google Scholar 

  • Moy SS, Perez A, Koller BH, Duncan GE (2006) Amphetamine-induced disruption of prepulse inhibition in mice with reduced NMDA receptor function. Brain Res 1089:186–194

    Article  PubMed  CAS  Google Scholar 

  • Murphy CA, Fend M, Russig H, Feldon J (2001) Latent inhibition, but not prepulse inhibition, is reduced during withdrawal from an escalating dosage schedule of amphetamine. Behav Neurosci 115:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Murray GK, Cheng F, Clark L, Barnett JH, Blackwell AD, Fletcher PC, Robbins TW, Bullmore ET, Jones PB (2008) Reinforcement and reversal learning in first-episode psychosis. Schizophr Bull 34:848–855

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima T, Kozawa T, Furukawa H, Kameyama T (1986) Phencyclidine-induced retrograde amnesia in mice. Psychopharmacology (Berl) 89:334–337

    Article  CAS  Google Scholar 

  • Nabeshima T, Mouri A, Murai R, Noda Y (2006) Animal model of schizophrenia: dysfunction of NMDA receptor-signaling in mice following withdrawal from repeated administration of phencyclidine. Ann N Y Acad Sci 1086:160–168

    Article  PubMed  CAS  Google Scholar 

  • Nelson EE, Winslow JT (2009) Non-human primates: model animals for developmental psychopathology. Neuropsychopharmacology 34:90–105

    Article  PubMed  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Nieratschker V, Nothen MM, Rietschel M (2010) New genetic findings in schizophrenia: Is there still room for the dopamine hypothesis of schizophrenia? Front Behav Neurosci 4:23

    PubMed  Google Scholar 

  • Nuechterlein KH, Luck SJ, Lustig C, Sarter M (2009) CNTRICS final task selection: control of attention. Schizophr Bull 35:182–196

    Article  PubMed  Google Scholar 

  • O’Connell G, Lawrie SM, McIntosh AM, Hall J (2011) Schizophrenia risk genes: implications for future drug development and discovery. Biochem Pharmacol 81:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • O’Loan J, Eyles DW, Kesby J, Ko P, McGrath JJ, Burne TH (2007) Vitamin D deficiency during various stages of pregnancy in the rat; its impact on development and behaviour in adult offspring. Psychoneuroendocrinology 32:227–234

    Article  PubMed  CAS  Google Scholar 

  • Oswald CJ, Yee BK, Rawlins JN, Bannerman DB, Good M, Honey RC (2002) The influence of selective lesions to components of the hippocampal system on the orienting [correction of orientating] response, habituation and latent inhibition. Eur J Neurosci 15:1983–1990

    Article  PubMed  CAS  Google Scholar 

  • Ouagazzal AM, Jenck F, Moreau JL (2001) Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: a model for detecting antipsychotic activity? Psychopharmacology (Berl) 156:273–283

    Article  CAS  Google Scholar 

  • Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59:546–554

    Article  PubMed  CAS  Google Scholar 

  • Paine TA, Carlezon WA Jr (2009) Effects of antipsychotic drugs on MK-801-induced attentional and motivational deficits in rats. Neuropharmacology 56:788–797

    Article  PubMed  CAS  Google Scholar 

  • Palmer AA, Brown AS, Keegan D, Siska LD, Susser E, Rotrosen J, Butler PD (2008) Prenatal protein deprivation alters dopamine-mediated behaviors and dopaminergic and glutamatergic receptor binding. Brain Res 1237:62–74

    Article  PubMed  CAS  Google Scholar 

  • Palmer AA, Printz DJ, Butler PD, Dulawa SC, Printz MP (2004) Prenatal protein deprivation in rats induces changes in prepulse inhibition and NMDA receptor binding. Brain Res 996:193–201

    Article  PubMed  CAS  Google Scholar 

  • Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, Chen J (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28:8709–8723

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Knuesel I, Feldon J (2008) Amphetamine sensitization in rats as an animal model of schizophrenia. Behav Brain Res 191:190–201

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Sydekum E, Feldon J (2006a) Differential effects on prepulse inhibition of withdrawal from two different repeated administration schedules of amphetamine. Int J Neuropsychopharmacol 9:737–749

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Sydekum E, Russig H, Feldon J (2006b) Withdrawal from continuous amphetamine administration abolishes latent inhibition but leaves prepulse inhibition intact. Psychopharmacology (Berl) 185:226–239

    Article  CAS  Google Scholar 

  • Peleg-Raibstein D, Sydekum E, Russig H, Feldon J (2006c) Withdrawal from repeated amphetamine administration leads to disruption of prepulse inhibition but not to disruption of latent inhibition. J Neural Transm 113:1323–1336

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Yee BK, Feldon J, Hauser J (2009) The amphetamine sensitization model of schizophrenia: relevance beyond psychotic symptoms? Psychopharmacology (Berl) 206:603–621

    Article  CAS  Google Scholar 

  • Penschuck S, Flagstad P, Didriksen M, Leist M, Michael-Titus AT (2006) Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. Eur J Neurosci 23:279–284

    Article  PubMed  Google Scholar 

  • Perry W, Minassian A, Paulus MP, Young JW, Kincaid MJ, Ferguson EJ, Henry BL, Zhuang X, Masten VL, Sharp RF, Geyer MA (2009) A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry 66:1072–1080

    Article  PubMed  Google Scholar 

  • Phillips KG, Cotel MC, McCarthy AP, Edgar DM, Tricklebank M, O’Neill MJ, Jones MW, Wafford KA (2012) Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia. Neuropharmacology 62:1359–1370

    Article  PubMed  CAS  Google Scholar 

  • Piontkewitz Y, Arad M, Weiner I (2011) Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat. Biol Psychiatry 70:842–851

    Article  PubMed  Google Scholar 

  • Piontkewitz Y, Arad M, Weiner I (2012) Tracing the development of psychosis and its prevention: what can be learned from animal models. Neuropharmacology 62:1273–1289

    Article  PubMed  CAS  Google Scholar 

  • Piontkewitz Y, Assaf Y, Weiner I (2009) Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia. Biol Psychiatry 66:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H, Mori S, Moran TH, Ross CA (2008) Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 13:173–186

    Article  PubMed  CAS  Google Scholar 

  • Pouzet B, Welzl H, Gubler MK, Broersen L, Veenman CL, Feldon J, Rawlins JN, Yee BK (1999) The effects of NMDA-induced retrohippocampal lesions on performance of four spatial memory tasks known to be sensitive to hippocampal damage in the rat. Eur J Neurosci 11:123–140

    Article  PubMed  CAS  Google Scholar 

  • Powell SB, Young JW, Ong JC, Caron MG, Geyer MA (2008) Atypical antipsychotics clozapine and quetiapine attenuate prepulse inhibition deficits in dopamine transporter knockout mice. Behav Pharmacol 19:562–565

    Article  PubMed  CAS  Google Scholar 

  • Pryce CR, Feldon J (2003) Long-term neurobehavioural impact of the postnatal environment in rats: manipulations, effects and mediating mechanisms. Neurosci Biobehav Rev 27:57–71

    Article  PubMed  Google Scholar 

  • Pryce CR, Ruedi-Bettschen D, Dettling AC, Feldon J (2002) Early life stress: long-term physiological impact in rodents and primates. News Physiol Sci 17:150–155

    PubMed  CAS  Google Scholar 

  • Quednow BB, Ettinger U, Mossner R, Rujescu D, Giegling I, Collier DA, Schmechtig A, Kuhn KU, Möller HJ, Maier W, Wagner M, Kumari V (2011) The schizophrenia risk allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers. J Neurosci 31:6684–6691

    Article  PubMed  CAS  Google Scholar 

  • Quednow BB, Schmechtig A, Ettinger U, Petrovsky N, Collier DA, Vollenweider FX, Wagner M, Kumari V (2009) Sensorimotor gating depends on polymorphisms of the serotonin-2A receptor and catechol-O-methyltransferase, but not on neuregulin-1 Arg38Gln genotype: a replication study. Biol Psychiatry 66:614–620

    Article  PubMed  CAS  Google Scholar 

  • Ranade SC, Rose A, Rao M, Gallego J, Gressens P, Mani S (2008) Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze. Neuroscience 152:859–866

    Article  PubMed  CAS  Google Scholar 

  • Rapoport JL, Addington AM, Frangou S, Psych MR (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434–449

    Article  PubMed  CAS  Google Scholar 

  • Reichenberg A (2005) Cognitive impairment as a risk factor for psychosis. Dialogues Clin Neurosci 7:31–38

    PubMed  Google Scholar 

  • Ridley RM (1994) The psychology of perserverative and stereotyped behaviour. Prog Neurobiol 44:221–231

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Rojas P, Joodmardi E, Hong Y, Perlmann T, Ogren SO (2007) Adult mice with reduced Nurr1 expression: an animal model for schizophrenia. Mol Psychiatry 12:756–766

    Article  PubMed  CAS  Google Scholar 

  • Romero E, Ali C, Molina-Holgado E, Castellano B, Guaza C, Borrell J (2007) Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology 32:1791–1804

    Article  PubMed  CAS  Google Scholar 

  • Romero E, Guaza C, Castellano B, Borrell J (2010) Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry 15:372–383

    Article  PubMed  CAS  Google Scholar 

  • Roussos P, Giakoumaki SG, Adamaki E, Anastasios G, Nikos RK, Bitsios P (2011) The association of schizophrenia risk D-amino acid oxidase polymorphisms with sensorimotor gating, working memory and personality in healthy males. Neuropsychopharmacology 36:1677–1688

    Article  PubMed  CAS  Google Scholar 

  • Rummel-Kluge C, Komossa K, Schwarz S, Hunger H, Schmid F, Kissling W, Davis JM, Leucht S (2012) Second-generation antipsychotic drugs and extrapyramidal side effects: a systematic review and meta-analysis of head-to-head comparisons. Schizophr Bull 38:167–177

    Article  PubMed  Google Scholar 

  • Russig H, Murphy CA, Feldon J (2002) Clozapine and haloperidol reinstate latent inhibition following its disruption during amphetamine withdrawal. Neuropsychopharmacology 26:765–777

    Article  PubMed  CAS  Google Scholar 

  • Russig H, Murphy CA, Feldon J (2005) Behavioural consequences of withdrawal from three different administration schedules of amphetamine. Behav Brain Res 165:26–35

    Article  PubMed  CAS  Google Scholar 

  • Sams-Dodd F (1995) Distinct effects of d-amphetamine and phencyclidine on the social behaviour of rats. Behav Pharmacol 6:55–65

    PubMed  CAS  Google Scholar 

  • Sams-Dodd F (1996) Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav Pharmacol 7:3–23

    PubMed  CAS  Google Scholar 

  • Sams-Dodd F (1999) Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity. Rev Neurosci 10:59–90

    Article  PubMed  CAS  Google Scholar 

  • Sams-Dodd F, Lipska BK, Weinberger DR (1997) Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology (Berl) 132:303–310

    Article  CAS  Google Scholar 

  • Sanders AR, Duan J, Levinson DF, Shi J, He D, Hou C, Burrell GJ, Rice JP, Nertney DA, Olincy A, Rozic P, Vinogradov S, Buccola NG, Mowry BJ, Freedman R, Amin F, Black DW, Silverman JM, Byerley WF, Crowe RR, Cloninger CR, Martinez M, Gejman PV (2008) No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 165:497–506

    Article  PubMed  Google Scholar 

  • Schiller D, Zuckerman L, Weiner I (2006) Abnormally persistent latent inhibition induced by lesions to the nucleus accumbens core, basolateral amygdala and orbitofrontal cortex is reversed by clozapine but not by haloperidol. J Psychiatr Res 40:167–177

    Article  PubMed  Google Scholar 

  • Schmadel S, Schwabe K, Koch M (2004) Effects of neonatal excitotoxic lesions of the entorhinal cortex on cognitive functions in the adult rat. Neuroscience 128:365–374

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, Koch M (2005) Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment. Neuropsychopharmacology 30:944–957

    Article  PubMed  CAS  Google Scholar 

  • Schwabe K, Enkel T, Klein S, Schutte M, Koch M (2004) Effects of neonatal lesions of the medial prefrontal cortex on adult rat behaviour. Behav Brain Res 153:21–34

    Article  PubMed  CAS  Google Scholar 

  • Schwabe K, Klein S, Koch M (2006) Behavioural effects of neonatal lesions of the medial prefrontal cortex and subchronic pubertal treatment with phencyclidine of adult rats. Behav Brain Res 168:150–160

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  PubMed  CAS  Google Scholar 

  • Seillier A, Giuffrida A (2009) Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav Brain Res 204:410–415

    Article  PubMed  CAS  Google Scholar 

  • Selten JP, van der Graaf Y, van Duursen R, Gispen-de Wied CC, Kahn RS (1999) Psychotic illness after prenatal exposure to the 1953 Dutch Flood Disaster. Schizophr Res 35:243–245

    Article  PubMed  CAS  Google Scholar 

  • Shalev U, Weiner I (2001) Gender-dependent differences in latent inhibition following prenatal stress and corticosterone administration. Behav Brain Res 126:57–63

    Article  PubMed  CAS  Google Scholar 

  • Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302

    PubMed  Google Scholar 

  • Shoemaker JM, Pitcher L, Noh HR, Swerdlow NR (2003) Quetiapine produces a prolonged reversal of the sensorimotor gating-disruptive effects of basolateral amygdala lesions in rats. Behav Neurosci 117:136–143

    Article  PubMed  CAS  Google Scholar 

  • Simen AA, DiLeone R, Arnsten AF (2009) Primate models of schizophrenia: future possibilities. Prog Brain Res 179:117–125

    Article  PubMed  CAS  Google Scholar 

  • Sircar R (2003) Postnatal phencyclidine-induced deficit in adult water maze performance is associated with N-methyl-D-aspartate receptor upregulation. Int J Dev Neurosci 21:159–167

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27:10695–10702

    Article  PubMed  CAS  Google Scholar 

  • Spielewoy C, Biala G, Roubert C, Hamon M, Betancur C, Giros B (2001) Hypolocomotor effects of acute and daily d-amphetamine in mice lacking the dopamine transporter. Psychopharmacology (Berl) 159:2–9

    Article  CAS  Google Scholar 

  • Stefani MR, Moghaddam B (2005) Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia. Biol Psychiatry 57:433–436

    Article  PubMed  CAS  Google Scholar 

  • Steinpreis RE (1996) The behavioral and neurochemical effects of phencyclidine in humans and animals: some implications for modeling psychosis. Behav Brain Res 74:45–55

    Article  PubMed  CAS  Google Scholar 

  • Sullivan PF (2005) The genetics of schizophrenia. PLoS Med 2:e212

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA, Koob GF (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychiatry 21:23–33

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24:285–301

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199:331–388

    Article  CAS  Google Scholar 

  • Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res 110:1–23

    Article  PubMed  Google Scholar 

  • Tandon R, Nasrallah HA, Keshavan MS (2010) Schizophrenia, “just the facts” 5. Treatment and prevention. Past, present, and future. Schizophr Res 122:1–23

    Article  PubMed  Google Scholar 

  • Tarantino LM, Bucan M (2000) Dissection of behavior and psychiatric disorders using the mouse as a model. Hum Mol Genet 9:953–965

    Article  PubMed  CAS  Google Scholar 

  • Tenn CC, Fletcher PJ, Kapur S (2005a) A putative animal model of the “prodromal” state of schizophrenia. Biol Psychiatry 57:586–593

    Article  PubMed  CAS  Google Scholar 

  • Tenn CC, Kapur S, Fletcher PJ (2005b) Sensitization to amphetamine, but not phencyclidine, disrupts prepulse inhibition and latent inhibition. Psychopharmacology (Berl) 180:366–376

    Article  CAS  Google Scholar 

  • Tonkiss J, Almeida SS, Galler JR (1998) Prenatally malnourished female but not male rats show increased sensitivity to MK-801 in a differential reinforcement of low rates task. Behav Pharmacol 9:49–60

    PubMed  CAS  Google Scholar 

  • Treadway MT, Zald DH (2011) Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 35:537–555

    Article  PubMed  Google Scholar 

  • Tueting P, Doueiri MS, Guidotti A, Davis JM, Costa E (2006) Reelin down-regulation in mice and psychosis endophenotypes. Neurosci Biobehav Rev 30:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Uehara T, Sumiyoshi T, Seo T, Itoh H, Matsuoka T, Suzuki M, Kurachi M (2009) Long-term effects of neonatal MK-801 treatment on prepulse inhibition in young adult rats. Psychopharmacology (Berl) 206:623–630

    Article  CAS  Google Scholar 

  • Vaillancourt C, Boksa P (1998) Caesarean section birth with general anesthesia increases dopamine-mediated behavior in the adult rat. Neuroreport 9:2953–2959

    Article  PubMed  CAS  Google Scholar 

  • van den Buuse M (2010) Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 36:246–270

    Article  PubMed  Google Scholar 

  • van der Staay FJ, Arndt SS, Nordquist RE (2009) Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct 5:11

    Article  PubMed  Google Scholar 

  • van Os J, Selten JP (1998) Prenatal exposure to maternal stress and subsequent schizophrenia. The, May 1940 invasion of The Netherlands. Br J Psychiatry 172:324–326

    Article  PubMed  Google Scholar 

  • Vanover KE, Weiner DM, Makhay M, Veinbergs I, Gardell LR, Lameh J, Del Tredici AL, Piu F, Schiffer HH, Ott TR, Burstein ES, Uldam AK, Thygesen MB, Schlienger N, Andersson CM, Son TY, Harvey SC, Powell SB, Geyer MA, Tolf BR, Brann MR, Davis RE (2006) Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N’-(4-(2-methylpropyloxy)phen ylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 317:910–918

    Article  PubMed  CAS  Google Scholar 

  • Venerosi A, Valanzano A, Cirulli F, Alleva E, Calamandrei G (2004) Acute global anoxia during C-section birth affects dopamine-mediated behavioural responses and reactivity to stress. Behav Brain Res 154:155–164

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11:642–651

    Article  PubMed  CAS  Google Scholar 

  • Vuillermot S, Feldon J, Meyer U (2011) Nurr1 is not essential for the development of prepulse inhibition deficits induced by prenatal immune activation. Brain Behav Immun 25:1316–1321

    Article  PubMed  CAS  Google Scholar 

  • Vuillermot S, Weber L, Feldon J, Meyer U (2010) A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci 30:1270–1287

    Article  PubMed  CAS  Google Scholar 

  • Wang CZ, Johnson KM (2007) The role of caspase-3 activation in phencyclidine-induced neuronal death in postnatal rats. Neuropsychopharmacology 32:1178–1194

    Article  PubMed  CAS  Google Scholar 

  • Warburton EC, Joseph MH, Feldon J, Weiner I, Gray JA (1994) Antagonism of amphetamine-induced disruption of latent inhibition in rats by haloperidol and ondansetron: implications for a possible antipsychotic action of ondansetron. Psychopharmacology (Berl) 114:657–664

    Article  CAS  Google Scholar 

  • Wedzony K, Fijal K, Mackowiak M, Chocyk A (2008a) Detrimental effect of postnatal blockade of N-methyl-D-aspartate receptors on sensorimotor gating is reversed by neuroleptic drugs. Pharmacol Rep 60:856–864

    PubMed  CAS  Google Scholar 

  • Wedzony K, Fijal K, Mackowiak M, Chocyk A, Zajaczkowski W (2008b) Impact of postnatal blockade of N-methyl-D-aspartate receptors on rat behavior: a search for a new developmental model of schizophrenia. Neuroscience 153:1370–1379

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50:825–844

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Lipska BK (1995) Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 16:87–110

    Article  PubMed  CAS  Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 169:257–297

    Article  CAS  Google Scholar 

  • Weiner I, Arad M (2009) Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. Behav Brain Res 204:369–386

    Article  PubMed  CAS  Google Scholar 

  • Weiner I, Bernasconi E, Broersen LM, Feldon J (1997a) Amphetamine-induced disruption of latent inhibition depends on the nature of the stimulus. Behav Pharmacol 8:442–457

    Article  PubMed  CAS  Google Scholar 

  • Weiner I, Feldon J (1997) The switching model of latent inhibition: an update of neural substrates. Behav Brain Res 88:11–25

    Article  PubMed  CAS  Google Scholar 

  • Weiner I, Gal G, Rawlins JN, Feldon J (1996) Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behav Brain Res 81:123–133

    Article  PubMed  CAS  Google Scholar 

  • Weiner I, Tarrasch R, Bernasconi E, Broersen LM, Ruttimann TC, Feldon J (1997b) Amphetamine-induced disruption of latent inhibition is not reinforcer-mediated. Pharmacol Biochem Behav 56:817–826

    Article  PubMed  CAS  Google Scholar 

  • Weiss IC, Feldon J (2001) Environmental animal models for sensorimotor gating deficiencies in schizophrenia: a review. Psychopharmacology (Berl) 156:305–326

    Article  CAS  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83:1–16

    Article  CAS  Google Scholar 

  • Willner P (1986) Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry 10:677–690

    Article  PubMed  CAS  Google Scholar 

  • Wolff AR, Bilkey DK (2008) Immune activation during mid-gestation disrupts sensorimotor gating in rat offspring. Behav Brain Res 190:156–159

    Article  PubMed  CAS  Google Scholar 

  • Wood SJ, Pantelis C, Velakoulis D, Yucel M, Fornito A, McGorry PD (2008) Progressive changes in the development toward schizophrenia: studies in subjects at increased symptomatic risk. Schizophr Bull 34:322–329

    Article  PubMed  Google Scholar 

  • Yee BK (2000) Cytotoxic lesion of the medial prefrontal cortex abolishes the partial reinforcement extinction effect, attenuates prepulse inhibition of the acoustic startle reflex and induces transient hyperlocomotion, while sparing spontaneous object recognition memory in the rat. Neuroscience 95:675–689

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Feldon J (2009) Distinct forms of prepulse inhibition disruption distinguishable by the associated changes in prepulse-elicited reaction. Behav Brain Res 204:387–395

    Article  PubMed  Google Scholar 

  • Yee BK, Feldon J, Rawlins JN (1995) Potentiation of amphetamine-induced locomotor activity following NMDA-induced retrohippocampal neuronal loss in the rat. Exp Brain Res 106:356–364

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Hauser J, Dolgov VV, Keist R, Mohler H, Rudolph U, Feldon J (2004) GABA receptors containing the alpha5 subunit mediate the trace effect in aversive and appetitive conditioning and extinction of conditioned fear. Eur J Neurosci 20:1928–1936

    Article  PubMed  Google Scholar 

  • Yee BK, Rawlins JN (1998) A comparison between the effects of medial septal lesions and entorhinal cortex lesions on performance of nonspatial working memory tasks and reversal learning. Behav Brain Res 94:281–300

    Article  PubMed  CAS  Google Scholar 

  • Yogev H, Hadar U, Gutman Y, Sirota P (2003) Perseveration and over-switching in schizophrenia. Schizophr Res 61:315–321

    Article  PubMed  Google Scholar 

  • Young JW, Powell SB, Risbrough V, Marston HM, Geyer MA (2009) Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 122:150–202

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman L, Rehavi M, Nachman R, Weiner I (2003a) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28:1778–1789

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman L, Rimmerman N, Weiner I (2003b) Latent inhibition in 35-day-old rats is not an “adult” latent inhibition: implications for neurodevelopmental models of schizophrenia. Psychopharmacology (Berl) 169:298–307

    Article  CAS  Google Scholar 

  • Zuckerman L, Weiner I (2005) Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 39:311–323

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joram Feldon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peleg-Raibstein, D., Feldon, J., Meyer, U. (2012). Behavioral Animal Models of Antipsychotic Drug Actions. In: Gross, G., Geyer, M. (eds) Current Antipsychotics. Handbook of Experimental Pharmacology, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25761-2_14

Download citation

Publish with us

Policies and ethics