Skip to main content

Mining Biological Networks for Similar Patterns

  • Chapter
  • First Online:
  • 1657 Accesses

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 25))

Abstract

In this chapter, we present efficient and accurate methods to analyze biological networks. Biological networks show how different biochemical entities interact with each other to perform vital functions for the survival of an organism. Three main types of biological networks are protein interaction networks, metabolic pathways and regulatory networks. In this work, we focus on alignment of metabolic networks.

We particularly focus on two algorithms which successfully tackle metabolic network alignment problem. The first algorithm uses a nonredundant graph model for representing networks. Using this model, it aligns reactions, compounds and enzymes of metabolic networks. The algorithm considers both the pairwise similarities of entities (homology) and the organization of networks (topology) for the final alignment. The second algorithm we describe allows mapping of entity sets to each other by relaxing the restriction of 1-to-1 mappings. This capturing biologically relevant alignments that cannot be identified by previous methods but it comes at an increasing computational cost and additional challenges. Finally, we discuss the significance of metabolic network alignment using the results of these algorithms on real data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Nemenman, I., Califano, A.: Reverse engineering cellular networks. Nature Protocols 1(2), 662–671 (2006)

    Article  Google Scholar 

  2. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pacific Symposium on Biocomputing (PSB), vol. 4, pp. 17–28 (1999)

    Google Scholar 

  3. Wong, S.L., Zhang, L.V., Tong, A.H., Li, Z., Goldberg, D.S., King, O.D., Lesage, G., Vidal, M., Andrews, B., Bussey, H., Boone, C., Roth, F.P.: Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences (PNAS) 101(44), 15682–15687 (2004)

    Article  Google Scholar 

  4. Wu, X., Zhu, L., Guo, J., Zhang, D.Y., Lin, K.: Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. Nucleic Acids Research 34(7), 2137–2150 (2006)

    Article  Google Scholar 

  5. Francke, C., Siezen, R.J., Teusink, B.: Reconstructing the metabolic network of a bacterium from its genome. Trends in Microbiology 13(11), 550–558 (2005)

    Article  Google Scholar 

  6. Cakmak, A., Ozsoyoglu, G.: Mining biological networks for unknown pathways. Bioinformatics 23(20), 2775–2783 (2007)

    Article  Google Scholar 

  7. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 27(1), 29–34 (1999)

    Article  Google Scholar 

  8. Keseler, I.M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil, M., Karp, P.D.: EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Research 33, 334–337 (2005)

    Article  Google Scholar 

  9. Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: PID: The Pathway Interaction Database. Nucleic Acids Research 37, 674–679 (2009)

    Article  Google Scholar 

  10. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The Database of Interacting Proteins: 2004 update. Nucleic Acids Research 32(1), 449–451 (2004)

    Article  Google Scholar 

  11. Sridhar, P., Kahveci, T., Ranka, S.: An iterative algorithm for metabolic network-based drug target identification. In: Pacific Symposium on Biocomputing (PSB), vol. 12, pp. 88–99 (2007)

    Google Scholar 

  12. Clemente, J.C., Satou, K., Valiente, G.: Finding Conserved and Non-Conserved Regions Using a Metabolic Pathway Alignment Algorithm. Genome Informatics 17(2), 46–56 (2006)

    Google Scholar 

  13. Heymans, M., Singh, A.: Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics 19, 138–146 (2003)

    Article  Google Scholar 

  14. Möhring, R.H. (ed.): WG 1990. LNCS, vol. 484, pp. 72–78. Springer, Heidelberg (1991)

    Google Scholar 

  15. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

    Article  Google Scholar 

  16. Webb, E.C.: Enzyme nomenclature 1992. Academic Press, London (1992)

    Google Scholar 

  17. Tohsato, Y., Nishimura, Y.: Metabolic Pathway Alignment Based on Similarity of Chemical Structures. Information and Media Technologies 3(1), 191–200 (2008)

    Google Scholar 

  18. Tohsato, Y., Matsuda, H., Hashimoto, A.: A Multiple Alignment Algorithm for Metabolic Pathway Analysis Using Enzyme Hierarchy. In: Intelligent Systems for Molecular Biology (ISMB), pp. 376–383 (2000)

    Google Scholar 

  19. Cheng, Q., Harrison, R., Zelikovsky, A.: MetNetAligner: a web service tool for metabolic network alignments. Bioinformatics 25(15), 1989–1990 (2009)

    Article  Google Scholar 

  20. Singh, R., Xu, J., Berger, B.: Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 16–31. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. Proceedings of the National Academy of Sciences (PNAS) 105, 12763–12768 (2008)

    Article  Google Scholar 

  22. Ay, F., Kahveci, T., de Crecy-Lagard, V.: Consistent alignment of metabolic pathways without abstraction. In: Computational Systems Bioinformatics Conference (CSB), vol. 7, pp. 237–248 (2008)

    Google Scholar 

  23. Ay, F., Kahveci, T., Crecy-Lagard, V.: A fast and accurate algorithm for comparative analysis of metabolic pathways. Journal of Bioinformatics and Computational Biology 7(3), 389–428 (2009)

    Article  Google Scholar 

  24. Koyuturk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent subgraphs in biological networks. In: Intelligent Systems for Molecular Biology (ISMB), pp. 200–207 (2004)

    Google Scholar 

  25. Deutscher, D., Meilijson, I., Schuster, S., Ruppin, E.: Can single knockouts accurately single out gene functions? BMC Systems Biology 2, 50 (2008)

    Article  Google Scholar 

  26. Watanabe, N., Cherney, M.M., van Belkum, M.J., Marcus, S.L., Flegel, M.D., Clay, M.D., Deyholos, M.K., Vederas, J.C., James, M.N.: Crystal structure of LL-diaminopimelate aminotransferase from Arabidopsis thaliana: a recently discovered enzyme in the biosynthesis of L-lysine by plants and Chlamydia. Journal of Molecular Biology 371(3), 685–702 (2007)

    Article  Google Scholar 

  27. McCoy, A.J., Adams, N.E., Hudson, A.O., Gilvarg, C., Leustek, T., Maurelli, A.T.: L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proceedings of the National Academy of Sciences (PNAS) 103(47), 17909–17914 (2006)

    Article  Google Scholar 

  28. Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. Journal of the American Chemical Society (JACS) 125(39), 11853–11865 (2003)

    Article  Google Scholar 

  29. Haveliwala, T.H., Kamvar, S.D.: The Second Eigenvalue of the Google Matrix. Stanford University Technical Report (March 2003)

    Google Scholar 

  30. Lovasz, L.: Stable set and polynomials. Discrete Mathematics 124, 137–153 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Austrin, P., Khot, S., Safra, M.: Inapproximability of Vertex Cover and Independent Set in Bounded Degree Graphs. In: IEEE Conference on Computational Complexity, pp. 74–80 (2009)

    Google Scholar 

  32. Berman, P., Karpinski, M.: On some tighter inapproximability results. LNCS (1999)

    Google Scholar 

  33. Sakai, S., Togasaki, M., Yamazaki, K.: A note on greedy algorithms for the maximum weighted independent set problem. Discrete Applied Mathematics 126, 313–322 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Green, M.L., Karp, P.D.: A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5, 76 (2004)

    Article  Google Scholar 

  35. Sridhar, P., Song, B., Kahveci, T., Ranka, S.: Mining metabolic networks for optimal drug targets. In: Pacific Symposium on Biocomputing (PSB), pp. 291–302 (2008)

    Google Scholar 

  36. Kim, J., Copley, S.D.: Why Metabolic Enzymes Are Essential or Nonessential for Growth of Escherichia coli K12 on Glucose. Biochemistry 46(44), 12501–12511 (2007)

    Article  Google Scholar 

  37. Saunders, P.P., Broquist, H.P.: Saccharopine, an intermediate of aminoadipic acid pathway of lysine biosynthesis. Journal of Biological Chemistry 241, 3435–3440 (1966)

    Google Scholar 

  38. Ay, F., Kahveci, T.: SubMAP: Aligning metabolic pathways with subnetwork mappings. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 15–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  39. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National Academy of Sciences (PNAS) 100(20), 11394–11399 (2003)

    Article  Google Scholar 

  40. Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Research 32(2), 83–88 (2004)

    Article  Google Scholar 

  41. Koyutürk, M., Grama, A., Szpankowski, W.: Pairwise Local Alignment of Protein Interaction Networks Guided by Models of Evolution. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 48–65. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  42. Koyuturk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise alignment of protein interaction networks. Journal of Computational Biology 13(2), 182–199 (2006)

    Article  MathSciNet  Google Scholar 

  43. Berg, J., Lassig, M.: Local graph alignment and motif search in biological networks. Proceedings of the National Academy of Sciences (PNAS) 101(41), 14689–14694 (2004)

    Article  Google Scholar 

  44. Berg, J., Lassig, M.: Cross-species analysis of biological networks by Bayesian alignment. Proceedings of the National Academy of Sciences (PNAS) 103(29), 10967–10972 (2006)

    Article  Google Scholar 

  45. Narayanan, M., Karp, R.M.: Comparing Protein Interaction Networks via a Graph Match-and-Split Algorithm. Journal of Computational Biology 14(7), 892–907 (2007)

    Article  Google Scholar 

  46. Dutkowski, J., Tiuryn, J.: Identification of functional modules from conserved ancestral protein protein interactions. Bioinformatics 23(13), 149–158 (2007)

    Article  Google Scholar 

  47. Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: QNet: A tool for querying protein interaction networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 1–15. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  48. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: A Method for Querying Pathways in a Protein-Protein Interaction Network. BMC Bioinformatics 7(199) (2006)

    Google Scholar 

  49. Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), 238–253 (2009)

    Article  Google Scholar 

  50. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species. Proceedings of the National Academy of Sciences (PNAS) 102, 1974–1979 (2005)

    Article  Google Scholar 

  51. Kalaev, M., Smoot, M., Ideker, T., Sharan, R.: NetworkBLAST: comparative analysis of protein networks. Bioinformatics 24(4), 594–596 (2008)

    Article  Google Scholar 

  52. Dandekar, T., Schuster, S., Snel, B., Huynen, M., Bork, P.: Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochemistry Journal 343, 115–124 (1999)

    Article  Google Scholar 

  53. Ogata, H., Fujibuchi, W., Goto, S., Kanehisa, M.: A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Research 28, 4021–4028 (2000)

    Article  Google Scholar 

  54. Chen, M., Hofestadt, R.: PathAligner: metabolic pathway retrieval and alignment. Appl. Bioinformatics 3(4), 241–252 (2004)

    Article  Google Scholar 

  55. Chen, M., Hofestadt, R.: Prediction and alignment of metabolic pathways. Bioinformatics of Genome Regulation and Structure II, 355–365 (2011)

    Google Scholar 

  56. Wernicke, S., Rasche, F.: Simple and fast alignment of metabolic pathways by exploiting local diversity. Bioinformatics 23(15), 1978–1985 (2007)

    Article  Google Scholar 

  57. Li, Z., Zhang, S., Wang, Y., Zhang, X.S., Chen, L.: Alignment of molecular networks by integer quadratic programming. Bioinformatics 23(13), 1631–1639 (2007)

    Article  Google Scholar 

  58. Li, Y., Ridder, D., de Groot, M.J.L., Reinders, M.J.T.: Metabolic Pathway Alignment (M-Pal) Reveals Diversity and Alternatives in Conserved Networks. In: Asia Pacific Bioinformatics Conference (APBC), pp. 273–286 (2008)

    Google Scholar 

  59. Li, Y., Ridder, D., de Groot, M.J.L., Reinders, M.J.T.: Metabolic pathway alignment between species using a comprehensive and flexible similarity measure. BMC Systems Biology 2(1), 111 (2008)

    Article  Google Scholar 

  60. Cheng, Q., Berman, P., Harrison, R., Zelikovsky, A.: Fast Alignments of Metabolic Networks. In: IEEE International Conference on Bioinformatics and Bioengineering (BIBE), pp. 147–152 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhat Ay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ay, F., Gülsoy, G., Kahveci, T. (2012). Mining Biological Networks for Similar Patterns. In: Holmes, D., Jain, L. (eds) Data Mining: Foundations and Intelligent Paradigms. Intelligent Systems Reference Library, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23151-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23151-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23150-6

  • Online ISBN: 978-3-642-23151-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics