Skip to main content

Abstract

The problem of finding “small” sets that meet every straight-line which intersects a given convex region was initiated by Mazurkiewicz in 1916. We call such a set an opaque set or a barrier for that region. We consider the problem of computing the shortest barrier for a given convex polygon with n vertices. No exact algorithm is currently known even for the simplest instances such as a square or an equilateral triangle. For general barriers, we present a O(n) time approximation algorithm with ratio \(\frac{1}{2}+ \frac{2 +\sqrt{2}}{\pi}=1.5867\ldots\). For connected barriers, we can achieve the approximation ratio \(\frac{\pi+5}{\pi+2} =1.5834\ldots\) again in O(n) time. We also show that if the barrier is restricted to the interior and the boundary of the input polygon, then the problem admits a fully polynomial-time approximation scheme for the connected case and a quadratic-time exact algorithm for the single-arc case. These are the first approximation algorithms obtained for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akman, V.: An algorithm for determining an opaque minimal forest of a convex polygon. Inform. Process. Lett. 24, 193–198 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asimov, D., Gerver, J.L.: Minimum opaque manifolds. Geom. Dedicata 133, 67–82 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bagemihl, F.: Some opaque subsets of a square. Michigan Math. J. 6, 99–103 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bárány, I., Füredi, Z.: Covering all secants of a square. In: Fejes Tóth, G. (ed.) Intuitive Geometry. Colloq. Math. Soc. János Bolyai, vol. 48, pp. 19–27 (1987)

    Google Scholar 

  5. Brakke, K.A.: The opaque cube problem. Amer. Math. Monthly 99(9), 866–871 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Croft, H.T.: Curves intersecting certain sets of great-circles on the sphere. J. London Math. Soc. 1(2), 461–469 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved Problems in Geometry. Springer, New York (1991)

    Book  MATH  Google Scholar 

  8. Dublish, P.: An O(n 3) algorithm for finding the minimal opaque forest of a convex polygon. Inform. Process. Lett. 29(5), 275–276 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dumitrescu, A., Jiang, M.: Minimum-perimeter intersecting polygons. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 433–445. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Eggleston, H.G.: The maximal in-radius of the convex cover of a plane connected set of given length. Proc. London Math. Soc. 45(3), 456–478 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdős, P., Pach, J.: On a problem of L. Fejes Tóth. Discrete Math. 30(2), 103–109 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Faber, V., Mycielski, J.: The shortest curve that meets all the lines that meet a convex body. Amer. Math. Monthly 93, 796–801 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faber, V., Mycielski, J., Pedersen, P.: On the shortest curve that meets all the lines which meet a circle. Ann. Polon. Math. 44, 249–266 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Fejes Tóth, L.: Exploring a planet. Amer. Math. Monthly 80, 1043–1044 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fejes Tóth, L.: Remarks on a dual of Tarski’s plank problem. Mat. Lapok. 25, 13–20 (1974)

    MathSciNet  MATH  Google Scholar 

  16. Finch, S.R.: Mathematical Constants. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  17. Gardner, M.: The opaque cube problem. Cubism for Fun 23, 15 (1990)

    Google Scholar 

  18. Gupta, H.M.S., Mazumdar, N.C.B.: A note on certain plane sets of points. Bull. Calcutta Math. Soc. 47, 199–201 (1955)

    MathSciNet  MATH  Google Scholar 

  19. Jones, R.E.D.: Opaque sets of degree α. Amer. Math. Monthly 71, 535–537 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Joris, H.: Le chasseur perdu dans le foret: une problème de géométrie plane. Elem. der Mathematik 35, 1–14 (1980)

    MATH  Google Scholar 

  21. Kawohl, B.: Some nonconvex shape optimization problems. In: Cellina, A., Ornelas, A. (eds.) Optimal Shape Design. LNM, vol. 1740. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Kern, W., Wanka, A.: On a problem about covering lines by squares. Discrete Comput. Geom. 5, 77–82 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klötzler, R.: Universale Rettungskurven I. Zeitschrifte für Analysis und ihre Anwendungen 5, 27–38 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klötzler, R., Pickenhain, S.: Universale Rettungskurven II. Zeitschrifte für Analysis und ihre Anwendungen 6, 363–369 (1987)

    Article  MathSciNet  Google Scholar 

  25. Makai Jr., E.: On a dual of Tarski’s plank problem. Discrete Geometrie 2, 127–132 (1980)

    MATH  Google Scholar 

  26. Makai Jr., E., Pach, J.: Controlling function classes and covering Euclidean space. Stud. Sci. Math. Hung. 18, 435–459 (1983)

    MathSciNet  MATH  Google Scholar 

  27. Mazurkiewicz, S.: Sur un ensemble fermé, punctiforme, qui rencontre toute droite passant par un certain domaine. Prace Mat.-Fiz. 27, 11–16 (1916)

    Google Scholar 

  28. Pach, J., Agarwal, P.K.: Combinatorial Geometry. John Wiley, New York (1995)

    Book  MATH  Google Scholar 

  29. Preparata, F., Shamos, M.I.: Computational Geometry. Springer, New York (1985)

    Book  MATH  Google Scholar 

  30. Provan, J.S.: Convexity and the Steiner tree problem. Networks 18, 55–72 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Richardson, T., Shepp, L.: The “point” goalie problem. Discrete Comput. Geom. 20, 649–669 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Scott, P.R.: A family of inequalities for convex sets. Bull. Austral. Math. Soc. 20, 237–245 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shermer, T.: A counterexample to the algorithms for determining opaque minimal forests. Inform. Process. Lett. 40, 41–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proc. Mediterranean Electrotechnical Conf., MELECON 1983, Athens (1983)

    Google Scholar 

  35. Valtr, P.: Unit squares intersecting all secants of a square. Discrete Comput. Geom. 11, 235–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Welzl, E.: The smallest rectangle enclosing a closed curve of length π, manuscript (1993), http://www.inf.ethz.ch/personal/emo/SmallPieces.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dumitrescu, A., Jiang, M., Pach, J. (2011). Opaque Sets. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics