Skip to main content

Mitochondrial Gene Expression and Dysfunction in Model Protozoa

  • Chapter
  • First Online:
Book cover Organelle Genetics

Abstract

Protozoan mitochondrial genomes are extraordinarily diverse in size, structure and gene organisation. Protozoan mitochondrial gene expression has been studied most extensively in the cellular slime mould, Dictyostelium discoideum, using various techniques that include northern hybridization and primer extension analyses to identify mitochondrial transcripts and their 5′ ends, Reverse Transcription–Polymerase Chain Reactions to identify transcripts not detectable by hybridization, in vitro capping to label transcripts generated by transcription initiation, mobility shift assays to identify protein-binding DNA sequences and in bacterio transcription to examine the function of these sequences. The results show that the 56 kb D. discoideum mitochondrial genome is transcribed from a single, unidirectional promoter and that the resulting polycistronic transcript is processed co-transcriptionally to produce mature mRNA, rRNA and tRNA molecules. For comparison, salient features of gene expression in mammalian and yeast mitochondria are described. D. discoideum is now an established model system for studying mitochondrial disease created by targeted gene disruption or by knocking down expression of nuclear-encoded mitochondrial proteins. Diverse cytopathologies ensue because of chronic dysregulation of intracellular signalling pathways, including hyperactivity of an energy-sensing protein kinase, AMP-activated Protein Kinase (AMPK).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agsteribbe E, Hartog M (1987) Processing of precursor RNAs from mitochondria of Neurospora crassa. Nucleic Acid Res 15:7249–7263

    PubMed  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organisation of the human mitochondrial genome. Nature 290:457–465

    PubMed  CAS  Google Scholar 

  • Angata K, Ogawa S, Yanagisawa K, Tanaka Y (1995) A group-I intron in the mitochondrial large-subunit ribosomal RNA-encoding gene of Dictyostelium discoideum: same site localisation in alga and in vitro self-splicing. Gene 153:49–55

    PubMed  CAS  Google Scholar 

  • Annesley SJ, Fisher PRF (2009) Dictyostelium discoideum – a model for many reasons. Mol Cell Biochem 329:73–91

    PubMed  CAS  Google Scholar 

  • Antoshechkin I, Bogenhagen DF (1995) Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA. Mol Cell Biol 15:7032–7042

    PubMed  CAS  Google Scholar 

  • Asin-Cayuela J, Gustafsson CM (2007) Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem Sci 32:111–117

    PubMed  CAS  Google Scholar 

  • Auchincloss AH, Brown GG (1989) Soybean mitochondrial transcripts capped in vitro with guanylyltransferase. Biochem Cell Biol 67:315–319

    CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Current protocols in molecular biology. Green Publishing Associates and Wiley, Toronto

    Google Scholar 

  • Banerjee AK (1980) 5′-Terminal cap structure in eukaryotic messenger ribonucleic acids. Microbiol Rev 44:175–205

    PubMed  CAS  Google Scholar 

  • Barth C, Greferath U, Kotsifas M, Fisher PR (1999) Polycistronic transcription and editing of the mitochondrial small subunit (SSU) ribosomal RNA in Dictyostelium discoideum. Curr Genet 36:55–61

    PubMed  CAS  Google Scholar 

  • Barth C, Greferath U, Kotsifas M, Tanaka Y, Alexander S, Alexander H, Fisher PR (2001) Transcript mapping and processing of mitochondrial RNA in Dictyostelium discoideum. Curr Genet 39:355–364

    PubMed  CAS  Google Scholar 

  • Barth C, Le P, Fisher PR (2007) Mitochondrial biology and disease in Dictyostelium. Int Rev Cytol 263:207–252

    PubMed  CAS  Google Scholar 

  • Binder S, Brennicke A (1993) Transcription initiations sites in mitochondria of Oenothera berteriana. J Biol Chem 268:7849–7855

    PubMed  CAS  Google Scholar 

  • Bisson R, Schiavo G, Papini E (1985) Cytochrome c oxidase from the slime mould Dictyostelium discoideum: purification and characterisation. Biochemistry 24:7845–7852

    CAS  Google Scholar 

  • Biswas TK (1999) Nucleotide sequences surrounding the nonanucleotide promoter motif influence the activity of the yeast mitochondrial promoter. Biochemistry 38:9693–9703

    PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Yoza BK (1986) Accurate in vitro transcription of Xenopus laevis mitochondrial DNA from two bidirectional promoters. Mol Cell Biol 6:2543–2550

    PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Applegate EF, Yoza BK (1984) Identification of a promoter for transcription of the heavy strand of human mtDNA: in vitro transcription and deletion mutagenesis. Cell 36:1105–1113

    PubMed  CAS  Google Scholar 

  • Bokko PB, Francioni L, Ahmed AU, Bandala-Sanchez E, Annesley SJ, Huang X, Khurana T, Kimmel AR, Fisher PR (2007) Diverse mitochondrial cytopathologies are caused by AMPK signalling. Mol Biol Cell 18:1874–1886

    PubMed  CAS  Google Scholar 

  • Bonen L (1991) The mitochondrial genome: so simple yet so complex. Curr Opin Genet Dev 1:515–522

    PubMed  CAS  Google Scholar 

  • Bullerwell CE, Leigh J, Forget L, Lang BF (2003) A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Res 31:759–768

    PubMed  CAS  Google Scholar 

  • Burger G, Helmer-Cittrich MH, Nelson MA, Werner S, Macino G (1985) RNA processing in Neurospora crassa mitochondria: transfer RNAs punctuate a large precursor transcript. EMBO J 4:197–204

    PubMed  CAS  Google Scholar 

  • Burger G, Plante I, Lonergan KM, Gray MW (1995) The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J Mol Biol 245:522–537

    PubMed  CAS  Google Scholar 

  • Burke JM, RajBhandary UL (1982) Intron within the large rRNA gene of Neurospora crassa mitochondria: a long open reading frame and a consensus sequence possibly important in splicing. Cell 31:509–520

    PubMed  CAS  Google Scholar 

  • Carilla-Latorre S, Gallardo ME, Annesley SJ, Calvo-Garrido J, Graña O, Accari SL, Smith PK, Valencia A, Garesse R, Fisher PR, Escalante R (2010) MidA is a putative mitochondrial methyltransferase required for mitochondrial complex I function. J Cell Sci 123:1674–1683

    PubMed  CAS  Google Scholar 

  • Cermakian N, Ikeda TM, Miramontes P, Lang BF, Gray MW, Cedergren R (1997) On the evolution of the single-subunit RNA polymerase. J Mol Evol 45:671–681

    PubMed  CAS  Google Scholar 

  • Cheetham GM, Steitz TA (2000) Insight into transcription: structure and function of single DNA-dependent RNA polymerase. Curr Opin Struct Biol 10:117–123

    PubMed  CAS  Google Scholar 

  • Chen W, Dieckmann C (1994) Cbp1p is required for message stability following 5′ processing of COB mRNA. J Biol Chem 269:16574–16578

    PubMed  CAS  Google Scholar 

  • Chida J, Yamaguchi H, Amagai A, Maeda Y (2004) The necessity of mitochondrial genome DNA for normal development of Dictyostelium cells. J Cell Sci 117:3141–3152

    PubMed  CAS  Google Scholar 

  • Chow TY, Fraser MJ (1983) Purification and properties of single strand DNA-binding endo-exonuclease of Neurospora crassa. J Biol Chem 258:12010–12018

    PubMed  CAS  Google Scholar 

  • Christianson T, Rabinowitz M (1983) Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanylyltransferase. J Biol Chem 258:14025–14033

    PubMed  CAS  Google Scholar 

  • Clayton DA (1984) Transcription of the mammalian mitochondrial genome. Annu Rev Biochem 53:573–594

    PubMed  CAS  Google Scholar 

  • Coates JC, Harwood AJ (2001) Cell-cell adhesion and signal transduction during Dictyostelium development. J Cell Sci 114:4349–4358

    PubMed  CAS  Google Scholar 

  • Cole RA, Williams KL (1994) The Dictyostelium discoideum mitochondrial genome: a primordial system using the universal code and encoding hydrophilic proteins atypical of metazoan mitochondrial DNA. J Mol Evol 39:579–588

    PubMed  CAS  Google Scholar 

  • Cole RA, Slade M, Williams K (1995) Dictyostelium discoideum mitochondrial DNA encodes a NADH: ubiquinone oxido-reductase subunit, which is nuclear encoded in other eukaryotes. J Mol Evol 40:616–621

    PubMed  CAS  Google Scholar 

  • Costanzo MC, Fox TD (1990) Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet 24:91–113

    PubMed  CAS  Google Scholar 

  • Cummings DJ, Domenico JM, Nelson J (1989) DNA sequence and secondary structures of the large subunit rRNA coding regions and its two class-I introns of mitochondrial DNA from Podospora anserina. J Mol Evol 28:242–255

    PubMed  CAS  Google Scholar 

  • Dake E, Hofmann TJ, McIntire S, Hudson A, Zassenhaus HP (1988) Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae. J Biol Chem 263:7691–7702

    PubMed  CAS  Google Scholar 

  • Dale JW, Schantz MV (2002) From genes to genomes: concepts and applications of DNA technology. Wiley, West Sussex

    Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647

    PubMed  CAS  Google Scholar 

  • Denslow ND, Michaels GS, Montoya J, Attardi G, O’Brian TW (1989) Mechanism of mRNA binding to Bovine mitochondrial ribosomes. J Biol Chem 264:8328–8338

    PubMed  CAS  Google Scholar 

  • Di Donato S (2009) Multisystem manifestations of mitochondrial disorders. J Neurol 256:693–710

    PubMed  Google Scholar 

  • Docherty K (1996) Gene transcription: DNA binding proteins essential techniques. Wiley, Chichester

    Google Scholar 

  • Dziembowski A, Piwowarski J, Hoser R, Minczuk M, Dmochowska A, Siep M, van der Spek H, Grivell L, Stepien PP (2003) The yeast mitochondrial degradosome; its composition, interplay between helicase and RNase activities and the role in mitochondrial metabolism. J Biol Chem 278:1603–1611

    PubMed  CAS  Google Scholar 

  • Edwards JC, Levens D, Rabinowitz M (1982) Analysis of transcriptional initiation of yeast mitochondrial DNA in a homologous in vitro transcription system. Cell 31:337–346

    PubMed  CAS  Google Scholar 

  • Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260

    PubMed  CAS  Google Scholar 

  • Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699

    PubMed  CAS  Google Scholar 

  • Foury F, Kucej M (2001) Yeast mitochondrial biogenesis: a model system for humans? Curr Opin Chem Biol 6:106–111

    Google Scholar 

  • Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–331

    PubMed  CAS  Google Scholar 

  • Francione L (2008) Mitochondrial disease in Dictyostelium discoideum. PhD Thesis. La Trobe University

    Google Scholar 

  • Francione L, Fisher PR (2010) Cytopathological mechanisms in mitochondrial disease. Curr Chem Biol 4:32–48

    CAS  Google Scholar 

  • Francione L, Smith PK, Accari SL, Taylor PE, Bokko PB, Bozzarro S, Beech PL, Fisher PR (2009) Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. Dis Model Mech 2:479–489

    PubMed  CAS  Google Scholar 

  • Freeman WM, Walker SJ, Vrana KE (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26:112–122

    PubMed  CAS  Google Scholar 

  • Gilson PR, Yu X-C, Hereld D, Barth C, Savage A, Kiefel BR, Lay S, Fisher PR, Margolin W, Beech PL (2003) Two Dictyostelium orthologs of the prokaryotic cell division protein FtsZ localize to mitochondria and are required for the maintenance of normal mitochondrial morphology. Eukaryot Cell 2:1315–1326

    PubMed  CAS  Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revised. Int Rev Cytol 14:233–357

    Google Scholar 

  • Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y, Burger G (1998) Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26:865–878

    PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38(477):524

    Google Scholar 

  • Hanic-Joyce PJ, Gray MW (1991) Accurate transcription of a plant mitochondrial gene in vitro. Mol Cell Biol 11:2035–2039

    PubMed  CAS  Google Scholar 

  • Hatano T, Kubo S-I, Sato S, Hattori N (2009) Pathogenesis of familial Parkinson’s disease: new insights based on monogenic forms of Parkinson’s disease. J Neurochem 111:1075–1093

    PubMed  CAS  Google Scholar 

  • Hatzack F, Dombrowski S, Brennicke A, Binder S (1998) Characterisation of DNA-binding proteins from pea mitochondria. Plant Physiol 116:519–527

    PubMed  CAS  Google Scholar 

  • Hoffmann B, Nickel J, Speer F, Schäfer B (2008) The 3′ ends of mature transcripts are generated by a proccessosome complex in fission yeast mitochondria. J Mol Biol 377:1024–1037

    PubMed  CAS  Google Scholar 

  • Ikeda S, Hasegawa H, Kaminaka S (1997) A 55-kDa endonuclease of mammalian mitochondria: comparison of its subcellular localisation and endonucleolytic properties with those of endonuclease G. Acta Med Okayama 51:55–62

    PubMed  CAS  Google Scholar 

  • Inazu Y, Chae SC, Maeda Y (1999) Transient expression of a mitochondrial gene cluster including rps4 is essential for the phase-shift of Dictyostelium cells from growth to differentiation. Dev Genet 25:339–352

    PubMed  CAS  Google Scholar 

  • Iwamoto M, Pi M, Kurihara M, Morio T, Tanaka Y (1998) A ribosomal protein gene cluster is encoded in the mitochondrial DNA of Dictyostelium discoideum: UGA termination codons and similarity of gene order to Acanthamoeba castellanii. Curr Genet 33:304–310

    PubMed  CAS  Google Scholar 

  • Jan P, Stein T, Hehl S, Lisowsky T (1999) Expression studies and promoter analysis of the nuclear gene for mitochondrial transcription factor 1 (MTF1) in yeast. Curr Genet 36:37–48

    PubMed  CAS  Google Scholar 

  • Keith JM, Venkatesan S, Gershowitz A, Moss B (1982) Purification and characterisation of the mRNA capping enzyme GTP:RNA guanylyltransferase from wheat germ. Biochemistry 21:327–333

    PubMed  CAS  Google Scholar 

  • Kennell JC, Lambowitz AM (1989) Development of an in vitro transcription system for Neurospora crassa mitochondrial DNA and identification of transcription initiation sites. Mol Cell Biol 9:3603–3613

    PubMed  CAS  Google Scholar 

  • Kotsifas M, Barth C, Lay ST, de Lozanne A, Fisher PR (2002) Chaperonin 60 and mitochondrial disease in Dictyostelium. J Muscle Res Cell Motil 23:839–852

    PubMed  CAS  Google Scholar 

  • Kück U, Godehardt I, Schmidt U (1990) A self-splicing group II intron in the mitochondrial large subunit rRNA (LSUrRNA) gene of the eukaryotic alga Scenedesmus obliquus. Nucleic Acids Res 18:2691–2697

    PubMed  Google Scholar 

  • Lang BF, Forget L (1993) The mitochondrial genome of Phytophthora infestans. In: O’Brien SJ (ed) Genetic maps. Cold Spring Harbor Laboratory, New York, pp 3.133–3.135

    Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sanko D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    PubMed  CAS  Google Scholar 

  • Le P, Fisher PR, Barth C (2009) Transcription of the Dictyostelium discoideum mitochondrial genome occurs from a single initiation site. RNA 15:2321–2330

    PubMed  CAS  Google Scholar 

  • Levens D, Ticho B, Ackerman E, Rabinowitz M (1981) Transcriptional initiation and 5′ termini of yeast mitochondrial RNA. J Biochem 25:5226–5232

    Google Scholar 

  • Li H, Zassenhaus HP (2000) Phosphorylation is required for high affinity binding of DBP, a yeast mitochondrial site-specific RNA binding protein. Curr Genet 37:356–363

    PubMed  CAS  Google Scholar 

  • Li J, Maga JA, Cermakian N, Cedergren R, Feagin JE (2001) Identification and characterization of a Plasmodium falciparum RNA polymerase gene with similarity to mitochondrial RNA polymerases. Mol Biochem Parasitol 113:261–269

    PubMed  CAS  Google Scholar 

  • Liao HX, Spremulli L (1989) Interaction of bovine mitochondrial ribosomes with messenger RNA. J Biol Chem 264:7518–7522

    PubMed  CAS  Google Scholar 

  • Liao HX, Spremulli L (1990) Effects of length and secondary structure on the interaction of bovine mitochondrial ribosomes with messenger RNA. J Biol Chem 265:11761–11765

    PubMed  CAS  Google Scholar 

  • Lonergan KM, Gray MW (1996) Expression of a continuous open reading frame encoding subunits 1 and 2 of cytochrome c oxidase in the mitochondrial DNA of Acanthamoeba castellanii. J Mol Biol 257:1019–1030

    PubMed  CAS  Google Scholar 

  • MacWilliams H, Doquang K, Pedrola R, Dollamn G, Grassi D, Peis T, Tsang A, Ceccarelli A (2006) A retinoblastoma ortholog controls stalk/spore preference in Dictyostelium. Development 133:1287–1297

    PubMed  CAS  Google Scholar 

  • Maeda Y (2005) Regulation of growth and differentiation in Dictyostelium. Int Rev Cytol 244:287–332

    PubMed  CAS  Google Scholar 

  • McAllister WT (1993) Structure and function of the bacteriophage T7 RNA polymerase (or, the virtues of simplicity). Cell Mol Biol Res 39:385–391

    PubMed  CAS  Google Scholar 

  • Meng XW, Fraser MJ, Ireland CM, Feller JM, Ziegler JB (1998) An investigation of a possible role for mitochondrial nuclease in apoptosis. Apoptosis 3:395–405

    PubMed  CAS  Google Scholar 

  • Montoya J, Ojala D, Attardi G (1981) Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290:465–470

    PubMed  CAS  Google Scholar 

  • Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G (1982) Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci U S A 79:7195–7199

    PubMed  CAS  Google Scholar 

  • Montoya J, Lopez-Perez M, Ruiz-Pesini E (2006) Mitochondrial DNA transcription and diseases: past, present and future. Biochim Biophys Acta 1757:1179–1189

    PubMed  CAS  Google Scholar 

  • Morita T, Amagai A, Maeda Y (2004) Translocation of the Dictyostelium TRAP1 homologue to mitochondria induces a novel prestarvation response. J Cell Sci 117:5759–5770

    PubMed  CAS  Google Scholar 

  • Nash EA, Nisbet RER, Barbrook AC, Howe CJ (2008) Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 24:328–355

    PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Kohchi T, Ogura Y, Kanegae T, Akashi K, Ohyama K (1992) Gene organisation deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    PubMed  CAS  Google Scholar 

  • Ogawa S, Matsuo K, Angata K, Yanagisawa K, Tanaka Y (1997) Group-I introns in the cytochrome c oxidase genes of Dictyostelium discoideum: two related ORFs in one loop of a group-I intron, a cox1/2 hybrid gene and an unusually large cox3 gene. Curr Genet 31:80–88

    PubMed  CAS  Google Scholar 

  • Ogawa S, Yoshino R, Angata K, Iwamoto M, Pi M, Kuroe K, Matsuo K, Morio T, Urushihara H, Yanagisawa K, Tanaka Y (2000) The mitochondrial DNA of Dictyostelium discoideum: complete sequence, gene content and genome organisation. Mol Gen Genet 263:514–519

    PubMed  CAS  Google Scholar 

  • Ojala D, Merkel C, Gelfand R, Attardi G (1980) The tRNA punctuate the reading of genetic information in human mitochondrial DNA. Cell 22:393–403

    PubMed  CAS  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    PubMed  CAS  Google Scholar 

  • Osinga KA, De Vries E, Van der Horst G, Tabak HF (1984) Processing of yeast mitochondrial messenger RNAs at a conserved dodecamer sequence. EMBO J 3:829–834

    PubMed  CAS  Google Scholar 

  • Otto GP, Kessin RH (2001) The intriguing biology of Dictyostelium discoideum meeting report: International Dictyostelium conference 2001. Protist 152:243–248

    PubMed  CAS  Google Scholar 

  • Oudot-Le Secq MP, Fontaine JM, Rousvoal S, Kloareg B, Loiseaux-de-Goër S (2001) The complete sequence of a brown algal mitochondrial genome, the ectocarpale Pylaiella littoralis (L.) Kjellm. J Mol Evol 53:80–88

    PubMed  CAS  Google Scholar 

  • Parisi MA, Clayton DA (1991) Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252:965–970

    PubMed  CAS  Google Scholar 

  • Pellizzari R, Anjard C, Bisson R (1997) Subunits I and II of Dictyostelium cytochrome c oxidase are specified by a single open reading frame transcribed into a large polycistronic RNA. Biochim Biophys Acta 1320:1–7

    PubMed  CAS  Google Scholar 

  • Pritchard AE, Seilhamer JJ, Mahalingam R, Sable CL, Venuiti SE, Cummings DJ (1990) Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res 18:173–180

    PubMed  CAS  Google Scholar 

  • Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501–512

    PubMed  CAS  Google Scholar 

  • Rodeheffer MS, Boone BE, Bryan AC, Shadel GS (2001) Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J Biol Chem 276:8616–8622

    PubMed  CAS  Google Scholar 

  • Rossignol R, Faustin B, Rocher C, Malgat M, Mazat J-P, Letellier T (2003) Mitochondrial threshold effects. Biochem J 370:751–762

    PubMed  CAS  Google Scholar 

  • Rossmanith W, Tullo A, Potuschak T, Karwan R, Sbisa E (1995) Human mitochondrial tRNA processing. J Biol Chem 270:12885–12891

    PubMed  CAS  Google Scholar 

  • Rousvoal S, Oudot MP, Fontaine JM, Kloareg B, Goer S (1998) Witnessing the evolution of transcription in mitochondria: the mitochondrial genome of the primitive brown alga Pylaiella littoralis (L.) Kjellm. encodes a T7-like RNA polymerase. J Mol Biol 277:1047–1058

    PubMed  CAS  Google Scholar 

  • Schäfer B (2005) RNA maturation in mitochondria of S. cerevisiae and S. pombe. Gene 354:80–85

    PubMed  Google Scholar 

  • Schäfer AM, Taylor RW, Turnbull DM, Chinnery PF (2004) The epidemiology of mitochondrial disorders – past, present and future. Biochim Biophys Acta 1659:115–120

    Google Scholar 

  • Schäfer B, Hansen M, Lang BF (2005) Transcription and RNA-processing in fission yeast mitochondria. RNA 11:785–795

    PubMed  Google Scholar 

  • Schäfer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63:35–39

    Google Scholar 

  • Schuster W, Brennicke A (1989) Conserved sequence elements at putative processing sites in plant mitochondria. Curr Genet 15:187–192

    PubMed  CAS  Google Scholar 

  • Shadel GS (2004) Coupling the mitochondrial transcription machinery to human disease. Trends Genet 20:513–519

    PubMed  CAS  Google Scholar 

  • Shadel GS, Clayton DA (1993) Mitochondrial transcription initiation, variation, and conservation. J Biol Chem 268:16083–16086

    PubMed  CAS  Google Scholar 

  • Shadel GS, Clayton DA (1995) A Saccharomyces cerevisiae mitochondrial transcription factor sc-mtTFB, shares features with sigma factors but is functionally distinct. Mol Cell Biol 15:2101–2108

    PubMed  CAS  Google Scholar 

  • Slomovic S, Laufer D, Geiger D, Schuster G (2005) Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol 25:6427–6435

    PubMed  CAS  Google Scholar 

  • Stewart JB, Beckenbach A (2009) Characterization of mature mitochondrial transcripts in Drosophila, and the implications for the tRNA punctuation model in arthropods. Gene 445:49–57

    PubMed  CAS  Google Scholar 

  • Szczesny R, Borowksi LS, Brzezniak LK, Dmochowska A, Gewartowski K, Bartnik E, Stepien PP (2010) Human mitochondrial turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Res 38:279–298

    PubMed  CAS  Google Scholar 

  • Taanman J (1999) The mitochondrial genome: structure, transcription, translation, and replication. Biochim Biophys Acta 1410:103–123

    PubMed  CAS  Google Scholar 

  • Takaku H, Minagawa A, Takagi M, Nashimoto M (2003) A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res 31:2272–2728

    PubMed  CAS  Google Scholar 

  • Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM (2010) Human mitochondrial mRNAs – like members of all families, similar but different. Biochim Biophys Acta 1797:1081–1085

    PubMed  CAS  Google Scholar 

  • Torija P, Vicente JJ, Rodrigues TB, Robles A, Cerdán S, Sastre L, Calvo RM, Escalante R (2006) Functional genomics in Dictyostelium: MidA, a novel conserved protein is required for mitochondrial function and development. J Cell Sci 119:1154–1164

    PubMed  CAS  Google Scholar 

  • Tracy RL, Stern DB (1995) Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet 28:205–216

    PubMed  CAS  Google Scholar 

  • Tzagaloff A, Myers AM (1986) Genetics of mitochondrial biogenesis. Annu Rev Biochem 55:249–285

    Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    PubMed  CAS  Google Scholar 

  • van Es S, Wessels D, Soll DR, Borleis J, Devreotes PN (2001) Tortoise, a novel mitochondrial protein, is required for directional responses of Dictyostelium in chemotactic gradients. J Cell Biol 152:621–632

    PubMed  Google Scholar 

  • van Loo G, Schotte P, van Gurp M, Demol H, Hoorelbeke B, Gevaert K, Rodriguez I, Ruiz-Carrillo A, Vandekerckhove J, Declercq W, Beyaert R, Vandenabeele P (2001) Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 8:1136–1142

    PubMed  Google Scholar 

  • Vila M, Ramonet D, Perier C (2008) Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem 107:317–328

    PubMed  CAS  Google Scholar 

  • Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A 91:1309–1313

    PubMed  CAS  Google Scholar 

  • Walberg MW, Clayton DA (1983) In vitro transcription of human mitochondrial DNA: identification of specific light strand transcripts from the displacement loop region. J Biol Chem 258:1268–1275

    PubMed  CAS  Google Scholar 

  • Wilczynska Z, Barth C, Fisher PR (1997) Mitochondrial mutations impair signal transduction in Dictyostelium discoideum slugs. Biochem Biophys Res Commun 234:39–43

    PubMed  CAS  Google Scholar 

  • Wilson RJM, Williamson DH (1997) Extrachromosomal DNA in the Apicomplexa. Microbial Mol Biol Rev 61:1–16

    CAS  Google Scholar 

  • Wolff G, Plante I, Lang BF, Kück U, Burger G (1994) Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. Gene content and genome organization. J Mol Biol 237:75–86

    PubMed  CAS  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    PubMed  CAS  Google Scholar 

  • Yoza BK, Bogenhagen DF (1984) Identification and in vitro capping of a primary transcript of human mitochondrial DNA. J Biol Chem 259:3909–3915

    PubMed  CAS  Google Scholar 

  • Zamaroczy M, Bernardi G (1986) The primary structure of the mitochondrial genome of Saccharomyces cerevisiae. Gene 47:155–177

    PubMed  Google Scholar 

  • Zeviani M, Carelli V (2007) Mitochondrial disorders. Curr Opin Neurol 20:564–571

    PubMed  CAS  Google Scholar 

  • Zhu Q, Hulen D, Liu T, Clarke M (1997) The cluA mutant of Dictyostelium identifies a novel class of proteins required for dispersion of mitochondria. Proc Natl Acad Sci USA 9:7308–7313

    Google Scholar 

  • Zurawski G, Zurawski SM (1985) Structure of the Escherichia coli S10-ribosomal protein operon. Nucleic Acids Res 13:4521–4526

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barth, C., Kennedy, L.A., Fisher, P.R. (2012). Mitochondrial Gene Expression and Dysfunction in Model Protozoa. In: Bullerwell, C. (eds) Organelle Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22380-8_10

Download citation

Publish with us

Policies and ethics