Skip to main content

Improved Distance Queries in Planar Graphs

  • Conference paper
Algorithms and Data Structures (WADS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6844))

Included in the following conference series:

Abstract

There are several known data structures that answers distance queries between two arbitrary vertices in a planar graph. The tradeoff is among preprocessing time, storage space and query time. In this paper we present three data structures that answer such queries, each with its own advantage over previous data structures. The first one improves the query time of data structures of linear space. The second improves the preprocessing time of data structures with a space bound of O(n 4/3) or higher while matching the best known query time. The third data structure improves the query time for a similar range of space bounds, at the expense of a longer preprocessing time. The techniques that we use include modifying the parameters of planar graph decompositions, combining the different advantages of existing data structures, and using the Monge property for finding minimum elements of matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-searching algorithms. Algorithmica 2, 195–208 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, A., Klawe, M.: Applications of generalized matrix searching to geometric algorithms. Discrete Appl. Math. 27, 3–23 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.H., Zaroliagis, C.D.: Planar spanners and approximate shortest path queries among obstacles in the plane. In: Díaz, J., Serna, M.J. (eds.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer, Heidelberg (1996)

    Google Scholar 

  4. Cabello, S.: Many distances in planar graphs. Algorithmica (to appear)

    Google Scholar 

  5. Chen, D.Z., Xu, J.: Shortest path queries in planar graphs. In: STOC 2000, pp. 469–478. ACM, New York (2000)

    Google Scholar 

  6. Djidjev, H.N.: Efficient algorithms for shortest path queries in planar digraphs. In: d’Amore, F., Franciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG 1996. LNCS, vol. 1197, pp. 151–165. Springer, Heidelberg (1997)

    Google Scholar 

  7. Djidjev, H.N., Venkatesan, S.M.: Planarization of graphs embedded on surfaces. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 62–72. Springer, Heidelberg (1995)

    Google Scholar 

  8. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci. 72, 868–889 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feuerstein, E., Marchetti-Spaccamela, A.: Dynamic algorithms for shortest paths in planar graphs. Theor. Comput. Sci. 116, 359–371 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16, 1004–1022 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55, 3–23 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hutchinson, J.P., Miller, G.L.: Deleting vertices to make graphs of positive genus planar. In: Discrete Algorithms and Complexity Theory, pp. 81–98. Academic Press, Boston (1986)

    Google Scholar 

  13. Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA 2005, pp. 145–155. SIAM, Philadelphia (2005)

    Google Scholar 

  14. Klein, P.N., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs with negative lengths: A linear-space O(n log2 n)-time algorithm. ACM Trans. Algorithms 6, 1–18 (2010)

    Article  MATH  Google Scholar 

  15. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. on Appl. Math. 36, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32, 265–279 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mozes, S., Sommer, C.: Exact Distance Oracles for Planar Graphs, arXiv:1011.5549v2 (2010)

    Google Scholar 

  18. Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real lengths in o(nlog2 n/loglogn) time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 206–217. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nussbaum, Y. (2011). Improved Distance Queries in Planar Graphs. In: Dehne, F., Iacono, J., Sack, JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22300-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22300-6_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22299-3

  • Online ISBN: 978-3-642-22300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics