Skip to main content

A Hybrid Search Strategy to Enhance Multiple Objective Optimization

  • Conference paper
  • 1640 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6704))

Abstract

This paper presents a new adaptive strategy for combining global (exploration) and local (exploitation) search capabilities of a multi-objective particle swarm optimizer (MOPSO).The goal of hybridization of search strategies is to enhance an optimizer’s overall performance. In contrast to previous attempts at hybridization, the proposed methodology efficiently balances exploration and exploitation of the search space using the two novel methods of intersection test and objective function normalization. Experimental results obtained from several well-known test cases demonstrate the efficiency of the proposed MOPSO algorithm. The results are compared with those obtained from NSGA-II, which is a well-established evolutionary algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001)

    Google Scholar 

  2. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 101–106 (2001)

    Google Scholar 

  3. He, S., Prempain, E., Wu, Q.H.: An improved particle swarm optimizer for mechanical design optimization problems. Engineering Optimization 36, 585–605 (2004)

    Article  MathSciNet  Google Scholar 

  4. Maeda, Y., Matsushita, N., Miyoshi, S., Hikawa, H.: On simultaneous perturbation particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 3271–3276 (2009)

    Google Scholar 

  5. Li, X.: Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 117–128. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Ho, S.L., Yang, S., Ni, G., Lo, E.W., Wong, H.C.: A particle swarm optimization-based method for multiobjective design optimizations. IEEE Transactions on Magnetics 41, 1756–1759 (2005)

    Article  Google Scholar 

  7. Ochlak, E., Forouraghi, B.: A particle swarm algorithm for multiobjectivedesign optimization. In: Proceeding of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2006), pp. 765–772 (2006)

    Google Scholar 

  8. Reddy, M.J., Kumar, D.N.: An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Engineering Optimization 39, 49–68 (2007)

    Article  MathSciNet  Google Scholar 

  9. Ono, S., Nakayama, S.: Multi-objective particle swarm optimization for robust optimization and its hybridization with gradient search. In: IEEE Congress on Evolutionary Computation, pp. 1629–1636 (2009)

    Google Scholar 

  10. Reyes-Sierra, M., CoelloCoello, C.A.: A survey of the state-of-the-art multi-objective particle swarm optimizers. International Journal of Computational Intelligence Research 2, 287–308 (2006)

    MathSciNet  Google Scholar 

  11. Koduru, P., Das, S., Welch, S.M.: A particle swarm optimization-neldermead hybrid algorithm for balanced exploration and exploitation in multidimensional search space. In: Proceeding of International Conference on Artificial Intelligence, Las Vegas, Nevada, pp. 457–464 (2006)

    Google Scholar 

  12. Santana-Quintero, L.V., Ramírez-Santiago, N., Coello, C.A.C., Luque, J.M., Hernández-Díaz, A.G.: A new proposal for multiobjective optimization using particle swarm optimization and rough sets theory. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 483–492. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. CoelloCoello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, New York (2007)

    Google Scholar 

  14. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. KanGAL Report 200001, Indian Institute of Technology, Kanpur, India (2000)

    Google Scholar 

  16. Deb, K., Pratap, A., Moitra, S.: Mechanical component design for multiple objectives using elitist non-dominated sorting GA. In: Proceeding of the Parallel Problem Solving from Nature VI Conference, pp. 859–868 (2000)

    Google Scholar 

  17. Liu, D., Tan, K., Goh, C., Ho, W.: A multiobjectivememetic algorithm based on particle swarm optimization. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 37, 585–605 (2007)

    Google Scholar 

  18. Ray, T., Liew, K.M.: A swarm metaphor for multiobjective design optimization. Engineering Optimization 34, 141–153 (2002)

    Article  Google Scholar 

  19. Clerc, M.: Particle Swarm Optimization. ISTE Ltd., California (2006)

    Book  MATH  Google Scholar 

  20. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, Chichester (2005)

    Google Scholar 

  21. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  22. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation 8, 173–195 (2000)

    Article  Google Scholar 

  23. Villalobos-Arias, M.A., Pulido, G.T., CoelloCoello, A.C.: A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer. In: Proceeding of Swarm Intelligence Symposium, pp. 22–29 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, L., Forouraghi, B. (2011). A Hybrid Search Strategy to Enhance Multiple Objective Optimization. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds) Modern Approaches in Applied Intelligence. IEA/AIE 2011. Lecture Notes in Computer Science(), vol 6704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21827-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21827-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21826-2

  • Online ISBN: 978-3-642-21827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics