Skip to main content

Molecular and Genetic Analysis of the Drosophila Model of Fragile X Syndrome

  • Chapter
  • First Online:
Modeling Fragile X Syndrome

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 54))

Abstract

The Drosophila genome contains most genes known to be involved in heritable disease. The extraordinary genetic malleability of Drosophila, coupled to sophisticated imaging, electrophysiology, and behavioral paradigms, has paved the way for insightful mechanistic studies on the causes of developmental and neurological disease as well as many possible interventions. Here, we focus on one of the most advanced examples of Drosophila genetic disease modeling, the Drosophila model of Fragile X Syndrome, which for the past decade has provided key advances into the molecular, cellular, and behavioral defects underlying this devastating disorder. We discuss the multitude of RNAs and proteins that interact with the disease-causing FMR1 gene product, whose function is conserved from Drosophila to human. In turn, we consider FMR1 mechanistic relationships in non-neuronal tissues (germ cells and embryos), peripheral motor and sensory circuits, and central brain circuits involved in circadian clock activity and learning/memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam JC, Pringle JR, Peifer M (2000) Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization. Mol Biol Cell 11:3123–3135

    PubMed  CAS  Google Scholar 

  • Akalal DB, Yu D, Davis RL (2010) A late-phase, long-term memory trace forms in the gamma neurons of Drosophila mushroom bodies after olfactory classical conditioning. J Neurosci 30:16699–16708

    Article  PubMed  CAS  Google Scholar 

  • Akerboom J, Rivera JD, Guilbe MM, Malave EC, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER (2009) Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 284:6455–6464

    Article  PubMed  CAS  Google Scholar 

  • Akins MR, Berk-Rauch HE, Fallon JR (2009) Presynaptic translation: stepping out of the postsynaptic shadow. Front Neural Circuits 3:17

    Article  PubMed  CAS  Google Scholar 

  • Antar LN, Li C, Zhang H, Carroll RC, Bassell GJ (2006) Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci 32:37–48

    Article  PubMed  CAS  Google Scholar 

  • Aschrafi A, Cunningham BA, Edelman GM, Vanderklish PW (2005) The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Proc Natl Acad Sci USA 102:2180–2185

    Article  PubMed  CAS  Google Scholar 

  • Ashley CT Jr, Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262:563–566

    Article  PubMed  CAS  Google Scholar 

  • Ball RW, Warren-Paquin M, Tsurudome K, Liao EH, Elazzouzi F, Cavanagh C, An BS, Wang TT, White JH, Haghighi AP (2010) Retrograde BMP signaling controls synaptic growth at the NMJ by regulating trio expression in motor neurons. Neuron 66:536–549

    Article  PubMed  CAS  Google Scholar 

  • Banerjee P, Nayar S, Hebbar S, Fox CF, Jacobs MC, Park JH, Fernandes JJ, Dockendorff TC (2007) Substitution of critical isoleucines in the KH domains of Drosophila fragile X protein results in partial loss-of-function phenotypes. Genetics 175:1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Barbee SA, Estes PS, Cziko AM, Hillebrand J, Luedeman RA, Coller JM, Johnson N, Howlett IC, Geng C, Ueda R et al (2006) Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52:997–1009

    Article  PubMed  CAS  Google Scholar 

  • Bauer CR, Epstein AM, Sweeney SJ, Zarnescu DC, Bosco G (2008) Genetic and systems level analysis of Drosophila sticky/citron kinase and dFmr1 mutants reveals common regulation of genetic networks. BMC Syst Biol 2:101

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377

    Article  PubMed  CAS  Google Scholar 

  • Bechara EG, Didiot MC, Melko M, Davidovic L, Bensaid M, Martin P, Castets M, Pognonec P, Khandjian EW, Moine H et al (2009) A novel function for fragile X mental retardation protein in translational activation. PLoS Biol 7:e16

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246

    Article  PubMed  CAS  Google Scholar 

  • Betschinger J, Mechtler K, Knoblich JA (2003) The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422:326–330

    Article  PubMed  CAS  Google Scholar 

  • Beumer KJ, Rohrbough J, Prokop A, Broadie K (1999) A role for PS integrins in morphological growth and synaptic function at the postembryonic neuromuscular junction of Drosophila. Development 126:5833–5846

    PubMed  CAS  Google Scholar 

  • Bilder D, Li M, Perrimon N (2000) Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289:113–116

    Article  PubMed  CAS  Google Scholar 

  • Blum AL, Li W, Cressy M, Dubnau J (2009) Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Curr Biol 19:1341–1350

    Article  PubMed  CAS  Google Scholar 

  • Bogdanik L, Mohrmann R, Ramaekers A, Bockaert J, Grau Y, Broadie K, Parmentier ML (2004) The Drosophila metabotropic glutamate receptor DmGluRA regulates activity-dependent synaptic facilitation and fine synaptic morphology. J Neurosci 24:9105–9116

    Article  PubMed  CAS  Google Scholar 

  • Bolduc FV, Bell K, Cox H, Broadie KS, Tully T (2008) Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat Neurosci 11:1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Bolduc FV, Bell K, Rosenfelt C, Cox H, Tully T (2010) Fragile x mental retardation 1 and filamin a interact genetically in Drosophila long-term memory. Front Neural Circuits 3:22

    Article  PubMed  CAS  Google Scholar 

  • Brendel C, Rehbein M, Kreienkamp HJ, Buck F, Richter D, Kindler S (2004) Characterization of Staufen 1 ribonucleoprotein complexes. Biochem J 384:239–246

    Article  PubMed  CAS  Google Scholar 

  • Brown V, Jin P, Ceman S, Darnell JC, O'Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD et al (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487

    Article  PubMed  CAS  Google Scholar 

  • Bushey D, Tononi G, Cirelli C (2009) The Drosophila fragile X mental retardation gene regulates sleep need. J Neurosci 29:1948–1961

    Article  PubMed  CAS  Google Scholar 

  • Callan MA, Cabernard C, Heck J, Luois S, Doe CQ, Zarnescu DC (2010) Fragile X protein controls neural stem cell proliferation in the Drosophila brain. Hum Mol Genet 19:3068–3079

    Article  PubMed  CAS  Google Scholar 

  • Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro S, Paratore S, Fradale F, de Vrij FM, Willemsen R, Oostra BA (2008) Genes and pathways differentially expressed in the brains of Fxr2 knockout mice. Neurobiol Dis 32:510–520

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Bray SM, Li Z, Zarnescu DC, He C, Jin P, Warren ST (2008) Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 4:256–263

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Yun SW, Seto J, Liu W, Toth M (2003) The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences. Neuroscience 120:1005–1017

    Article  PubMed  CAS  Google Scholar 

  • Chen YM, Gerwin C, Sheng ZH (2009) Dynein light chain LC8 regulates syntaphilin-mediated mitochondrial docking in axons. J Neurosci 29:9429–9438

    Article  PubMed  CAS  Google Scholar 

  • Choi CH, McBride SM, Schoenfeld BP, Liebelt DA, Ferreiro D, Ferrick NJ, Hinchey P, Kollaros M, Rudominer RL, Terlizzi AM et al (2010) Age-dependent cognitive impairment in a Drosophila fragile X model and its pharmacological rescue. Biogerontology 11:347–362

    Article  PubMed  Google Scholar 

  • Choi CH, Schoenfeld BP, Bell AJ, Hinchey P, Kollaros M, Gertner MJ, Woo NH, Tranfaglia MR, Bear MF, Zukin RS et al (2011) Pharmacological reversal of synaptic plasticity deficits in the mouse model of Fragile X syndrome by group II mGluR antagonist or lithium treatment. Brain Res 1380:106–119

    Article  PubMed  CAS  Google Scholar 

  • Christie SB, Akins MR, Schwob JE, Fallon JR (2009) The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J Neurosci 29:1514–1524

    Article  PubMed  CAS  Google Scholar 

  • Coffee RL Jr, Tessier CR, Woodruff EA 3rd, Broadie K (2010) Fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P. Dis Model Mech 3:471–485

    Article  PubMed  CAS  Google Scholar 

  • Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94:5401–5404

    Article  PubMed  CAS  Google Scholar 

  • Consortium D-BFX (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33

    Google Scholar 

  • Costa A, Wang Y, Dockendorff TC, Erdjument-Bromage H, Tempst P, Schedl P, Jongens TA (2005) The Drosophila fragile X protein functions as a negative regulator in the orb autoregulatory pathway. Dev Cell 8:331–342

    Article  PubMed  CAS  Google Scholar 

  • Cziko AM, McCann CT, Howlett IC, Barbee SA, Duncan RP, Luedemann R, Zarnescu D, Zinsmaier KE, Parker RR, Ramaswami M (2009) Genetic modifiers of dFMR1 encode RNA granule components in Drosophila. Genetics 182:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • D'Agata V, Warren ST, Zhao W, Torre ER, Alkon DL, Cavallaro S (2002) Gene expression profiles in a transgenic animal model of fragile X syndrome. Neurobiol Dis 10:211–218

    Article  PubMed  CAS  Google Scholar 

  • Dahdal D, Reeves DC, Ruben M, Akabas MH, Blau J (2010) Drosophila pacemaker neurons require g protein signaling and GABAergic inputs to generate twenty-four hour behavioral rhythms. Neuron 68:964–977

    Article  PubMed  CAS  Google Scholar 

  • Darnell JC, Fraser CE, Mostovetsky O, Stefani G, Jones TA, Eddy SR, Darnell RB (2005a) Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev 19:903–918

    Article  PubMed  CAS  Google Scholar 

  • Darnell JC, Mostovetsky O, Darnell RB (2005b) FMRP RNA targets: identification and validation. Genes Brain Behav 4:341–349

    Article  PubMed  CAS  Google Scholar 

  • Darnell JC, Fraser CE, Mostovetsky O, Darnell RB (2009) Discrimination of common and unique RNA-binding activities among Fragile X mental retardation protein paralogs. Hum Mol Genet 18:3164–3177

    Article  PubMed  CAS  Google Scholar 

  • De Diego Otero Y, Severijnen LA, van Cappellen G, Schrier M, Oostra B, Willemsen R (2002) Transport of fragile X mental retardation protein via granules in neurites of PC12 cells. Mol Cell Biol 22:8332–8341

    Article  PubMed  CAS  Google Scholar 

  • de Vrij FM, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI, Nelson DL, Oostra BA, Willemsen R (2008) Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 31:127–132

    Article  PubMed  CAS  Google Scholar 

  • Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR (2008) The interaction network of the chaperonin CCT. EMBO J 27:1827–1839

    Article  PubMed  CAS  Google Scholar 

  • Deshpande G, Calhoun G, Schedl P (2006) The drosophila fragile X protein dFMR1 is required during early embryogenesis for pole cell formation and rapid nuclear division cycles. Genetics 174:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • D'Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, Kooy RF (2006) Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 1121:238–245

    Article  PubMed  CAS  Google Scholar 

  • DiAntonio A (2006) Glutamate receptors at the Drosophila neuromuscular junction. Int Rev Neurobiol 75:165–179

    Article  PubMed  CAS  Google Scholar 

  • Dickman DK, Lu Z, Meinertzhagen IA, Schwarz TL (2006) Altered synaptic development and active zone spacing in endocytosis mutants. Curr Biol 16:591–598

    Article  PubMed  CAS  Google Scholar 

  • Dockendorff TC, Su HS, McBride SM, Yang Z, Choi CH, Siwicki KK, Sehgal A, Jongens TA (2002) Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34:973–984

    Article  PubMed  CAS  Google Scholar 

  • Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Tully T (2001) Functional anatomy: from molecule to memory. Curr Biol 11:R240–R243

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Grady L, Kitamoto T, Tully T (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411:476–480

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Chiang AS, Grady L, Barditch J, Gossweiler S, McNeil J, Smith P, Buldoc F, Scott R, Certa U et al (2003) The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13:286–296

    Article  PubMed  CAS  Google Scholar 

  • Dykens E, Leckman J, Paul R, Watson M (1988) Cognitive, behavioral, and adaptive functioning in fragile X and non-fragile X retarded men. J Autism Dev Disord 18:41–52

    Article  PubMed  CAS  Google Scholar 

  • Eaton BA, Fetter RD, Davis GW (2002) Dynactin is necessary for synapse stabilization. Neuron 34:729–741

    Article  PubMed  CAS  Google Scholar 

  • Elia M, Ferri R, Musumeci SA, Del Gracco S, Bottitta M, Scuderi C, Miano G, Panerai S, Bertrand T, Grubar JC (2000) Sleep in subjects with autistic disorder: a neurophysiological and psychological study. Brain Dev 22:88–92

    Article  PubMed  CAS  Google Scholar 

  • Epstein AM, Bauer CR, Ho A, Bosco G, Zarnescu DC (2009) Drosophila Fragile X protein controls cellular proliferation by regulating cbl levels in the ovary. Dev Biol 330:83–92

    Article  PubMed  CAS  Google Scholar 

  • Fahling M, Mrowka R, Steege A, Kirschner KM, Benko E, Forstera B, Persson PB, Thiele BJ, Meier JC, Scholz H (2009) Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein. J Biol Chem 284:4255–4266

    Article  PubMed  CAS  Google Scholar 

  • Featherstone DE, Rushton E, Rohrbough J, Liebl F, Karr J, Sheng Q, Rodesch CK, Broadie K (2005) An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J Neurosci 25:3199–3208

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Gutekunst CA, Eberhart DE, Yi H, Warren ST, Hersch SM (1997) Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci 17:1539–1547

    PubMed  CAS  Google Scholar 

  • Fernandez MP, Chu J, Villella A, Atkinson N, Kay SA, Ceriani MF (2007) Impaired clock output by altered connectivity in the circadian network. Proc Natl Acad Sci USA 104:5650–5655

    Article  PubMed  CAS  Google Scholar 

  • Fischer JA, Giniger E, Maniatis T, Ptashne M (1988) GAL4 activates transcription in Drosophila. Nature 332:853–856

    Article  PubMed  CAS  Google Scholar 

  • Flanagan LA, Chou J, Falet H, Neujahr R, Hartwig JH, Stossel TP (2001) Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. J Cell Biol 155:511–517

    Article  PubMed  CAS  Google Scholar 

  • Friedman DB, Hoving S, Westermeier R (2009) Isoelectric focusing and two-dimensional gel electrophoresis. Methods Enzymol 463:515–540

    Article  PubMed  CAS  Google Scholar 

  • Fulks JL, O'Bryhim BE, Wenzel SK, Fowler SC, Vorontsova E, Pinkston JW, Ortiz AN, Johnson MA (2010) Dopamine release and uptake impairments and behavioral alterations observed in mice that model fragile X mental retardation syndrome. ACS Chem Neurosci 1:679–690

    Article  PubMed  CAS  Google Scholar 

  • Gantois I, Vandesompele J, Speleman F, Reyniers E, D'Hooge R, Severijnen LA, Willemsen R, Tassone F, Kooy RF (2006) Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 21:346–357

    Article  PubMed  CAS  Google Scholar 

  • Gatto CL, Broadie K (2008) Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 135:2637–2648

    Article  PubMed  CAS  Google Scholar 

  • Gatto CL, Broadie K (2009) Temporal requirements of the fragile x mental retardation protein in modulating circadian clock circuit synaptic architecture. Front Neural Circuits 3:8

    Article  PubMed  CAS  Google Scholar 

  • Gatto CL, Broadie K (2010) Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Front Synaptic Neurosci 2:4

    PubMed  Google Scholar 

  • Gu H, O'Dowd DK (2007) Whole cell recordings from brain of adult Drosophila. J Vis Exp: 248

    Google Scholar 

  • Hanson JE, Madison DV (2007) Presynaptic FMR1 genotype influences the degree of synaptic connectivity in a mosaic mouse model of fragile X syndrome. J Neurosci 27:4014–4018

    Article  PubMed  CAS  Google Scholar 

  • Heckscher ES, Fetter RD, Marek KW, Albin SD, Davis GW (2007) NF-kappaB, IkappaB, and IRAK control glutamate receptor density at the Drosophila NMJ. Neuron 55:859–873

    Article  PubMed  CAS  Google Scholar 

  • Helfrich-Forster C, Shafer OT, Wulbeck C, Grieshaber E, Rieger D, Taghert P (2007) Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J Comp Neurol 500:47–70

    Article  PubMed  CAS  Google Scholar 

  • Hessl D, Rivera SM, Reiss AL (2004) The neuroanatomy and neuroendocrinology of fragile X syndrome. Ment Retard Dev Disabil Res Rev 10:17–24

    Article  PubMed  Google Scholar 

  • Hoeft F, Lightbody AA, Hazlett HC, Patnaik S, Piven J, Reiss AL (2008) Morphometric spatial patterns differentiating boys with fragile X syndrome, typically developing boys, and developmentally delayed boys aged 1 to 3 years. Arch Gen Psychiatry 65:1087–1097

    Article  PubMed  Google Scholar 

  • Hoeft F, Carter JC, Lightbody AA, Cody Hazlett H, Piven J, Reiss AL (2010a) Region-specific alterations in brain development in one- to three-year-old boys with fragile X syndrome. Proc Natl Acad Sci USA 107:9335–9339

    Article  PubMed  CAS  Google Scholar 

  • Hoeft F, Walter E, Lightbody AA, Hazlett HC, Chang C, Piven J, Reiss AL (2010b) Neuroanatomical differences in toddler boys with fragile x syndrome and idiopathic autism. Arch Gen Psychiatry 68(3):295–305

    Article  PubMed  Google Scholar 

  • Inoue S, Shimoda M, Nishinokubi I, Siomi MC, Okamura M, Nakamura A, Kobayashi S, Ishida N, Siomi H (2002) A role for the Drosophila fragile X-related gene in circadian output. Curr Biol 12:1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Irwin SA, Galvez R, Greenough WT (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex 10:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, Kooy F, Willems PJ, Cras P, Kozlowski PB et al (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98:161–167

    Article  PubMed  CAS  Google Scholar 

  • Isabel G, Pascual A, Preat T (2004) Exclusive consolidated memory phases in Drosophila. Science 304:1024–1027

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16:2497–2508

    Article  PubMed  CAS  Google Scholar 

  • Janovjak H, Szobota S, Wyart C, Trauner D, Isacoff EY (2010) A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 13:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman V, Laurent G (2007) Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies. Front Neural Circuits 1:3

    Article  PubMed  Google Scholar 

  • Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7:113–117

    Article  PubMed  CAS  Google Scholar 

  • Keleman K, Kruttner S, Alenius M, Dickson BJ (2007) Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nat Neurosci 10:1587–1593

    Article  PubMed  CAS  Google Scholar 

  • Keshishian H, Broadie K, Chiba A, Bate M (1996) The drosophila neuromuscular junction: a model system for studying synaptic development and function. Annu Rev Neurosci 19:545–575

    Article  PubMed  CAS  Google Scholar 

  • Khandjian EW, Huot ME, Tremblay S, Davidovic L, Mazroui R, Bardoni B (2004) Biochemical evidence for the association of fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proc Natl Acad Sci USA 101:13357–13362

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick LL, McIlwain KA, Nelson DL (2001) Comparative genomic sequence analysis of the FXR gene family: FMR1, FXR1, and FXR2. Genomics 78:169–177

    Article  PubMed  CAS  Google Scholar 

  • Koh YH, Gramates LS, Budnik V (2000) Drosophila larval neuromuscular junction: molecular components and mechanisms underlying synaptic plasticity. Microsc Res Tech 49:14–25

    Article  PubMed  CAS  Google Scholar 

  • Kooy RF, D'Hooge R, Reyniers E, Bakker CE, Nagels G, De Boulle K, Storm K, Clincke G, De Deyn PP, Oostra BA et al (1996) Transgenic mouse model for the fragile X syndrome. Am J Med Genet 64:241–245

    Article  PubMed  CAS  Google Scholar 

  • Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N, Budnik V (2009) Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139:393–404

    Article  PubMed  CAS  Google Scholar 

  • Krashes MJ, Keene AC, Leung B, Armstrong JD, Waddell S (2007) Sequential use of mushroom body neuron subsets during drosophila odor memory processing. Neuron 53:103–115

    Article  PubMed  CAS  Google Scholar 

  • Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren ST, Schlessinger D, Sutherland GR, Richards RI (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001) Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10:329–338

    Article  PubMed  CAS  Google Scholar 

  • Leatherman JL, Jongens TA (2003) Transcriptional silencing and translational control: key features of early germline development. Bioessays 25:326–335

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–4076

    PubMed  CAS  Google Scholar 

  • Lee A, Li W, Xu K, Bogert BA, Su K, Gao FB (2003) Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 130:5543–5552

    Article  PubMed  CAS  Google Scholar 

  • Li MG, Serr M, Edwards K, Ludmann S, Yamamoto D, Tilney LG, Field CM, Hays TS (1999) Filamin is required for ring canal assembly and actin organization during Drosophila oogenesis. J Cell Biol 146:1061–1074

    Article  PubMed  CAS  Google Scholar 

  • Li KW, Miller S, Klychnikov O, Loos M, Stahl-Zeng J, Spijker S, Mayford M, Smit AB (2007) Quantitative proteomics and protein network analysis of hippocampal synapses of CaMKIIalpha mutant mice. J Proteome Res 6:3127–3133

    Article  PubMed  CAS  Google Scholar 

  • Liao L, Park SK, Xu T, Vanderklish P, Yates JR 3rd (2008) Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proc Natl Acad Sci USA 105:15281–15286

    Article  PubMed  CAS  Google Scholar 

  • Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  PubMed  CAS  Google Scholar 

  • Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96(1):19–25

    Article  PubMed  Google Scholar 

  • Lnenicka GA, Grizzaffi J, Lee B, Rumpal N (2006) Ca2+ dynamics along identified synaptic terminals in Drosophila larvae. J Neurosci 26:12283–12293

    Article  PubMed  CAS  Google Scholar 

  • Lohmann C (2009) Calcium signaling and the development of specific neuronal connections. Prog Brain Res 175:443–452

    Article  PubMed  Google Scholar 

  • Lu R, Wang H, Liang Z, Ku L, O'Donnell WT, Li W, Warren ST, Feng Y (2004) The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc Natl Acad Sci USA 101:15201–15206

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Liao YJ, Jan LY, Jan YN (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8:1787–1802

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, Pfeiffer RL, Szulwach KE, Duan R, Barkho BZ et al (2010) Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet 6:e1000898

    Article  PubMed  CAS  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto A, Ukai-Tadenuma M, Yamada RG, Houl J, Uno KD, Kasukawa T, Dauwalder B, Itoh TQ, Takahashi K, Ueda R et al (2007) A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev 21:1687–1700

    Article  PubMed  CAS  Google Scholar 

  • McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, Sehgal A, Siwicki KK, Dockendorff TC, Nguyen HT et al (2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45:753–764

    Article  PubMed  CAS  Google Scholar 

  • McGuire SE, Roman G, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391

    Article  PubMed  CAS  Google Scholar 

  • Megosh HB, Cox DN, Campbell C, Lin H (2006) The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol 16:1884–1894

    Article  PubMed  CAS  Google Scholar 

  • Miano S, Bruni O, Elia M, Scifo L, Smerieri A, Trovato A, Verrillo E, Terzano MG, Ferri R (2008) Sleep phenotypes of intellectual disability: a polysomnographic evaluation in subjects with Down syndrome and Fragile-X syndrome. Clin Neurophysiol 119:1242–1247

    Article  PubMed  Google Scholar 

  • Michel CI, Kraft R, Restifo LL (2004) Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants. J Neurosci 24:5798–5809

    Article  PubMed  CAS  Google Scholar 

  • Mientjes EJ, Willemsen R, Kirkpatrick LL, Nieuwenhuizen IM, Hoogeveen-Westerveld M, Verweij M, Reis S, Bardoni B, Hoogeveen AT, Oostra BA et al (2004) Fxr1 knockout mice show a striated muscle phenotype: implications for Fxr1p function in vivo. Hum Mol Genet 13:1291–1302

    Article  PubMed  CAS  Google Scholar 

  • Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, Carbonetto S, Weiler IJ, Greenough WT, Eberwine J (2003) RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37:417–431

    Article  PubMed  CAS  Google Scholar 

  • Monzo K, Papoulas O, Cantin GT, Wang Y, Yates JR 3rd, Sisson JC (2006) Fragile X mental retardation protein controls trailer hitch expression and cleavage furrow formation in Drosophila embryos. Proc Natl Acad Sci USA 103:18160–18165

    Article  PubMed  CAS  Google Scholar 

  • Monzo K, Dowd SR, Minden JS, Sisson JC (2010) Proteomic analysis reveals CCT is a target of Fragile X mental retardation protein regulation in Drosophila. Dev Biol 340:408–418

    Article  PubMed  CAS  Google Scholar 

  • Morales J, Hiesinger PR, Schroeder AJ, Kume K, Verstreken P, Jackson FR, Nelson DL, Hassan BA (2002) Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34:961–972

    Article  PubMed  CAS  Google Scholar 

  • Muddashetty RS, Kelic S, Gross C, Xu M, Bassell GJ (2007) Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 27:5338–5348

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto M, Nalavadi V, Epstein MP, Narayanan U, Bassell GJ, Warren ST (2007) Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci USA 104:15537–15542

    Article  PubMed  CAS  Google Scholar 

  • Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134:1042–1054

    Article  PubMed  CAS  Google Scholar 

  • Neufeld TP, Rubin GM (1994) The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77:371–379

    Article  PubMed  CAS  Google Scholar 

  • Newby LM, Jackson FR (1996) Regulation of a specific circadian clock output pathway by lark, a putative RNA-binding protein with repressor activity. J Neurobiol 31:117–128

    Article  PubMed  CAS  Google Scholar 

  • Ng J, Nardine T, Harms M, Tzu J, Goldstein A, Sun Y, Dietzl G, Dickson BJ, Luo L (2002) Rac GTPases control axon growth, guidance and branching. Nature 416:442–447

    Article  PubMed  CAS  Google Scholar 

  • Nicolai LJ, Ramaekers A, Raemaekers T, Drozdzecki A, Mauss AS, Yan J, Landgraf M, Annaert W, Hassan BA (2010) Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc Natl Acad Sci USA 107:20553–20558

    Article  PubMed  CAS  Google Scholar 

  • Nitabach MN, Taghert PH (2008) Organization of the Drosophila circadian control circuit. Curr Biol 18:R84–R93

    Article  PubMed  CAS  Google Scholar 

  • Nosyreva ED, Huber KM (2006) Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol 95:3291–3295

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (2001) Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 13:641–648

    Article  PubMed  CAS  Google Scholar 

  • Oliver B (2006) Tiling DNA microarrays for fly genome cartography. Nat Genet 38:1101–1102

    Article  PubMed  CAS  Google Scholar 

  • Osterwalder T, Yoon KS, White BH, Keshishian H (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci USA 98:12596–12601

    Article  PubMed  CAS  Google Scholar 

  • Osterweil EK, Krueger DD, Reinhold K, Bear MF (2010) Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci 30:15616–15627

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Broadie KS (2007) Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A convergently regulate the synaptic ratio of ionotropic glutamate receptor subclasses. J Neurosci 27:12378–12389

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Zhang YQ, Woodruff E, Broadie K (2004) The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr Biol 14:1863–1870

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Woodruff E 3rd, Liang P, Broadie K (2008) Mechanistic relationships between Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A signaling. Mol Cell Neurosci 37:747–760

    Article  PubMed  CAS  Google Scholar 

  • Papoulas O, Monzo KF, Cantin GT, Ruse C, Yates JR 3rd, Ryu YH, Sisson JC (2010) dFMRP and Caprin, translational regulators of synaptic plasticity, control the cell cycle at the Drosophila mid-blastula transition. Development 137:4201–4209

    Article  PubMed  CAS  Google Scholar 

  • Park S, Park JM, Kim S, Kim JA, Shepherd JD, Smith-Hicks CL, Chowdhury S, Kaufmann W, Kuhl D, Ryazanov AG et al (2008) Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59:70–83

    Article  PubMed  CAS  Google Scholar 

  • Parrish JZ, Xu P, Kim CC, Jan LY, Jan YN (2009) The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons. Neuron 63:788–802

    Article  PubMed  CAS  Google Scholar 

  • Pepper AS, Beerman RW, Bhogal B, Jongens TA (2009) Argonaute2 suppresses Drosophila fragile X expression preventing neurogenesis and oogenesis defects. PLoS ONE 4:e7618

    Article  PubMed  CAS  Google Scholar 

  • Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66:817–822

    Article  PubMed  CAS  Google Scholar 

  • Poustka A, Dietrich A, Langenstein G, Toniolo D, Warren ST, Lehrach H (1991) Physical map of human Xq27-qter: localizing the region of the fragile X mutation. Proc Natl Acad Sci USA 88:8302–8306

    Article  PubMed  CAS  Google Scholar 

  • Qin G, Schwarz T, Kittel RJ, Schmid A, Rasse TM, Kappei D, Ponimaskin E, Heckmann M, Sigrist SJ (2005) Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J Neurosci 25:3209–3218

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran P, Barria R, Ashley J, Budnik V (2009) A critical step for postsynaptic F-actin organization: regulation of Baz/Par-3 localization by aPKC and PTEN. Dev Neurobiol 69:583–602

    Article  PubMed  CAS  Google Scholar 

  • Reeve SP, Bassetto L, Genova GK, Kleyner Y, Leyssen M, Jackson FR, Hassan BA (2005) The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr Biol 15:1156–1163

    Article  PubMed  CAS  Google Scholar 

  • Reeve SP, Lin X, Sahin BH, Jiang F, Yao A, Liu Z, Zhi H, Broadie K, Li W, Giangrande A et al (2008) Mutational analysis establishes a critical role for the N terminus of fragile X mental retardation protein FMRP. J Neurosci 28:3221–3226

    Article  PubMed  CAS  Google Scholar 

  • Repicky S, Broadie K (2009) Metabotropic glutamate receptor-mediated use-dependent down-regulation of synaptic excitability involves the fragile X mental retardation protein. J Neurophysiol 101:672–687

    Article  PubMed  CAS  Google Scholar 

  • Rohrbough J, Pinto S, Mihalek RM, Tully T, Broadie K (1999) latheo, a Drosophila gene involved in learning, regulates functional synaptic plasticity. Neuron 23:55–70

    Article  PubMed  CAS  Google Scholar 

  • Rohrbough J, Grotewiel MS, Davis RL, Broadie K (2000) Integrin-mediated regulation of synaptic morphology, transmission, and plasticity. J Neurosci 20:6868–6878

    PubMed  CAS  Google Scholar 

  • Royou A, McCusker D, Kellogg DR, Sullivan W (2008) Grapes(Chk1) prevents nuclear CDK1 activation by delaying cyclin B nuclear accumulation. J Cell Biol 183:63–75

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Canada C, Ashley J, Moeckel-Cole S, Drier E, Yin J, Budnik V (2004) New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants. Neuron 42:567–580

    Article  PubMed  CAS  Google Scholar 

  • Salinas S, Carazo-Salas RE, Proukakis C, Schiavo G, Warner TT (2007) Spastin and microtubules: functions in health and disease. J Neurosci Res 85:2778–2782

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer C, Bardoni B, Mandel JL, Ehresmann B, Ehresmann C, Moine H (2001) The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J 20:4803–4813

    Article  PubMed  CAS  Google Scholar 

  • Schenck A, Van de Bor V, Bardoni B, Giangrande A (2002) Novel features of dFMR1, the Drosophila orthologue of the fragile X mental retardation protein. Neurobiol Dis 11:53–63

    Article  PubMed  CAS  Google Scholar 

  • Schenck A, Bardoni B, Langmann C, Harden N, Mandel JL, Giangrande A (2003) CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38:887–898

    Article  PubMed  CAS  Google Scholar 

  • Schoenenberger P, Zhang Scharer YP, Oertner TG (2011) Channelrhodopsin as a tool to investigate synaptic transmission and plasticity. Exp Physiol 96(1):34–39

    Article  PubMed  Google Scholar 

  • Schuster CM, Ultsch A, Schmitt B, Betz H (1993) Molecular analysis of Drosophila glutamate receptors. EXS 63:234–240

    PubMed  CAS  Google Scholar 

  • Sekine T, Yamaguchi T, Hamano K, Siomi H, Saez L, Ishida N, Shimoda M (2008) Circadian phenotypes of Drosophila fragile x mutants in alternative genetic backgrounds. Zoolog Sci 25:561–571

    Article  PubMed  CAS  Google Scholar 

  • Sheeba V, Fogle KJ, Kaneko M, Rashid S, Chou YT, Sharma VK, Holmes TC (2008) Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr Biol 18:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Shiina N, Shinkura K, Tokunaga M (2005) A novel RNA-binding protein in neuronal RNA granules: regulatory machinery for local translation. J Neurosci 25:4420–4434

    Article  PubMed  CAS  Google Scholar 

  • Siomi MC, Siomi H, Sauer WH, Srinivasan S, Nussbaum RL, Dreyfuss G (1995) FXR1, an autosomal homolog of the fragile X mental retardation gene. EMBO J 14:2401–2408

    PubMed  CAS  Google Scholar 

  • Soden ME, Chen L (2010) Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. J Neurosci 30:16910–16921

    Article  PubMed  CAS  Google Scholar 

  • Sofola O, Sundram V, Ng F, Kleyner Y, Morales J, Botas J, Jackson FR, Nelson DL (2008) The Drosophila FMRP and LARK RNA-binding proteins function together to regulate eye development and circadian behavior. J Neurosci 28:10200–10205

    Article  PubMed  CAS  Google Scholar 

  • Solomon S, Xu Y, Wang B, David MD, Schubert P, Kennedy D, Schrader JW (2007) Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol Cell Biol 27:2324–2342

    Article  PubMed  CAS  Google Scholar 

  • Stefani G, Fraser CE, Darnell JC, Darnell RB (2004) Fragile X mental retardation protein is associated with translating polyribosomes in neuronal cells. J Neurosci 24:7272–7276

    Article  PubMed  CAS  Google Scholar 

  • Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, Hua S, Herreman T, Tongprasit W, Barbano PE et al (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306:655–660

    Article  PubMed  CAS  Google Scholar 

  • Strand D, Unger S, Corvi R, Hartenstein K, Schenkel H, Kalmes A, Merdes G, Neumann B, Krieg-Schneider F, Coy JF et al (1995) A human homologue of the Drosophila tumour suppressor gene l(2)gl maps to 17p11.2-12 and codes for a cytoskeletal protein that associates with nonmuscle myosin II heavy chain. Oncogene 11:291–301

    PubMed  CAS  Google Scholar 

  • Sung YJ, Conti J, Currie JR, Brown WT, Denman RB (2000) RNAs that interact with the fragile X syndrome RNA binding protein FMRP. Biochem Biophys Res Commun 275:973–980

    Article  PubMed  CAS  Google Scholar 

  • Sung YJ, Dolzhanskaya N, Nolin SL, Brown T, Currie JR, Denman RB (2003) The fragile X mental retardation protein FMRP binds elongation factor 1A mRNA and negatively regulates its translation in vivo. J Biol Chem 278:15669–15678

    Article  PubMed  CAS  Google Scholar 

  • Suvrathan A, Hoeffer CA, Wong H, Klann E, Chattarji S (2010) Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA 107:11591–11596

    Article  PubMed  CAS  Google Scholar 

  • Tadros W, Lipshitz HD (2005) Setting the stage for development: mRNA translation and stability during oocyte maturation and egg activation in Drosophila. Dev Dyn 232:593–608

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Chang JS, Costa A, Schedl P (2001) An autoregulatory feedback loop directs the localized expression of the Drosophila CPEB protein Orb in the developing oocyte. Development 128:1159–1169

    PubMed  CAS  Google Scholar 

  • Tessier CR, Broadie K (2008) Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning. Development 135:1547–1557

    Article  PubMed  CAS  Google Scholar 

  • Tessier CR, Broadie K (2011) The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. Neurobiol Dis 41:147–159

    Article  PubMed  CAS  Google Scholar 

  • Tian AG, Deng WM (2008) Lgl and its phosphorylation by aPKC regulate oocyte polarity formation in Drosophila. Development 135:463–471

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  • Todd PK, Mack KJ, Malter JS (2003) The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proc Natl Acad Sci USA 100:14374–14378

    Article  PubMed  CAS  Google Scholar 

  • Tripodi M, Evers JF, Mauss A, Bate M, Landgraf M (2008) Structural homeostasis: compensatory adjustments of dendritic arbor geometry in response to variations of synaptic input. PLoS Biol 6:e260

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79:35–47

    Article  PubMed  CAS  Google Scholar 

  • Unwin RD (2010) Quantification of proteins by iTRAQ. Methods Mol Biol 658:205–215

    Article  PubMed  CAS  Google Scholar 

  • Volk LJ, Pfeiffer BE, Gibson JR, Huber KM (2007) Multiple Gq-coupled receptors converge on a common protein synthesis-dependent long-term depression that is affected in fragile X syndrome mental retardation. J Neurosci 27:11624–11634

    Article  PubMed  CAS  Google Scholar 

  • Wan L, Dockendorff TC, Jongens TA, Dreyfuss G (2000) Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol 20:8536–8547

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wu LJ, Kim SS, Lee FJ, Gong B, Toyoda H, Ren M, Shang YZ, Xu H, Liu F et al (2008a) FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59:634–647

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Mamiya A, Chiang AS, Zhong Y (2008b) Imaging of an early memory trace in the Drosophila mushroom body. J Neurosci 28:4368–4376

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Kim SS, Zhuo M (2010) Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. J Biol Chem 285:21888–21901

    Article  PubMed  CAS  Google Scholar 

  • Wei ZX, Yi YH, Sun WW, Wang R, Su T, Bai YJ, Liao WP (2007) Expression changes of microtubule associated protein 1B in the brain of Fmr1 knockout mice. Neurosci Bull 23:203–208

    Article  PubMed  CAS  Google Scholar 

  • Weiler IJ, Spangler CC, Klintsova AY, Grossman AW, Kim SH, Bertaina-Anglade V, Khaliq H, de Vries FE, Lambers FA, Hatia F et al (2004) Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci USA 101:17504–17509

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Bogert BA, Li W, Su K, Lee A, Gao FB (2004) The fragile X-related gene affects the crawling behavior of Drosophila larvae by regulating the mRNA level of the DEG/ENaC protein pickpocket1. Curr Biol 14:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Xu XL, Li Y, Wang F, Gao FB (2008) The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. J Neurosci 28:11883–11889

    Article  PubMed  CAS  Google Scholar 

  • Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15:1255–1262

    Article  PubMed  CAS  Google Scholar 

  • Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP (2005) Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Xu S, Xia L, Wang J, Wen S, Jin P, Chen D (2009) The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5:e1000444

    Article  PubMed  CAS  Google Scholar 

  • Yao A, Jin S, Li X, Liu Z, Ma X, Tang J, Zhang YQ (2011) Drosophila FMRP regulates microtubule network formation and axonal transport of mitochondria. Hum Mol Genet 20(1):51–63

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Pritchard M, Kremer E, Lynch M, Nancarrow J, Baker E, Holman K, Mulley JC, Warren ST, Schlessinger D et al (1991) Fragile X genotype characterized by an unstable region of DNA. Science 252:1179–1181

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Akalal DB, Davis RL (2006) Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron 52:845–855

    Article  PubMed  CAS  Google Scholar 

  • Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, Oostra B, Bagni C (2003) The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112:317–327

    Article  PubMed  CAS  Google Scholar 

  • Zalfa F, Eleuteri B, Dickson KS, Mercaldo V, De Rubeis S, di Penta A, Tabolacci E, Chiurazzi P, Neri G, Grant SG et al (2007) A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci 10:578–587

    Article  PubMed  CAS  Google Scholar 

  • Zarnescu DC, Jin P, Betschinger J, Nakamoto M, Wang Y, Dockendorff TC, Feng Y, Jongens TA, Sisson JC, Knoblich JA et al (2005) Fragile X protein functions with lgl and the par complex in flies and mice. Dev Cell 8:43–52

    Article  PubMed  CAS  Google Scholar 

  • Zars T (2000) Behavioral functions of the insect mushroom bodies. Curr Opin Neurobiol 10:790–795

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, O'Connor JP, Siomi MC, Srinivasan S, Dutra A, Nussbaum RL, Dreyfuss G (1995) The fragile X mental retardation syndrome protein interacts with novel homologs FXR1 and FXR2. EMBO J 14:5358–5366

    PubMed  CAS  Google Scholar 

  • Zhang X, McNeil GP, Hilderbrand-Chae MJ, Franklin TM, Schroeder AJ, Jackson FR (2000) Circadian regulation of the lark RNA-binding protein within identifiable neurosecretory cells. J Neurobiol 45:14–29

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, Speese SD, Rubin GM, Broadie K (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107:591–603

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Matthies HJ, Mancuso J, Andrews HK, Woodruff E 3rd, Friedman D, Broadie K (2004) The Drosophila fragile X-related gene regulates axoneme differentiation during spermatogenesis. Dev Biol 270:290–307

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Friedman DB, Wang Z, Woodruff E 3rd, Pan L, O'Donnell J, Broadie K (2005) Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis. Mol Cell Proteomics 4:278–290

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Wang Q, Huang Y (2007) Fragile X mental retardation protein FMRP and the RNA export factor NXF2 associate with and destabilize Nxf1 mRNA in neuronal cells. Proc Natl Acad Sci USA 104:10057–10062

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Fuger P, Hannan SB, Kern JV, Lasky B and Rasse TM (2010) In vivo imaging of intact Drosophila larvae at sub-cellular resolution. J Vis Exp Sep 10;(43). pii: 2249. doi: 10.3791/2249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendal Broadie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tessier, C.R., Broadie, K. (2012). Molecular and Genetic Analysis of the Drosophila Model of Fragile X Syndrome. In: Denman, R. (eds) Modeling Fragile X Syndrome. Results and Problems in Cell Differentiation, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21649-7_7

Download citation

Publish with us

Policies and ethics