Skip to main content

Magnetic Interactions Governing the Inverse Magnetocaloric Effect in Martensitic Ni–Mn-Based Shape-memory Alloys

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 148))

Abstract

Ni–Mn–X Heusler-type alloys (X: group IIIB–VB elements) undergo martensitic transformations, and many of them exhibit magnetic shape-memory and field-induced effects, one of the most predominant being the inverse magnetocaloric effect. To understand the cause of the inverse magnetocaloric effect, which involves a magnetic entropy increase with applied field, it is necessary to understand the nature of the magnetic coupling in the temperature vicinity of the martensitic transition.We present results on neutron polarization analysis experiments on Ni–Mn-based martensitic Heusler systems, with which we show that around M <M sare antiferromagnetic. We discuss the relationship of the magnetic coupling and the inverse magnetocaloric effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Planes, L. Mañosa, M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys.: Condens. Matter 21, 233201 (2009)

    Google Scholar 

  2. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69, 1966 (1996)

    Article  CAS  Google Scholar 

  3. O. Soderberg, A. Sozinov, Y. Ge, S.-P. Hannula, V.K. Lindroos, Giant Magnetostrictive Materials, vol. 16, ed. by K.H.J. Buschow Handbook of Magnetic Materials (Elsevier, Amsterdam, 2006) p. 1

    Google Scholar 

  4. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Magnetic and martensitic transformations of NiMnX (X = In,Sn,Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358 (2004)

    Article  CAS  Google Scholar 

  5. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mat. 4, 450 (2005)

    Article  CAS  Google Scholar 

  6. J. Marcos, L. Mañosa, A. Planes, F. Casanova, X. Batlle, A. Labarta, Multiscale origin of the magnetocaloric effect in Ni–Mn–Ga shape-memory alloys. Phys. Rev. B 68, 094401 (2003)

    Article  Google Scholar 

  7. L. Pareti, M. Solzi, F. Albertini, A. Paoluzi, Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni2. 19Mn0. 81Ga Heusler alloy, Eur. Phys. J. B 32, 303 (2003)

    Google Scholar 

  8. I. Dubenko, M. Khan, A.K. Pathak, B.R. Gautam, S. Stadler, N. Ali, Magnetocaloric effects in Ni–Mn–X based Heusler alloys with X = Ga, Sb,In. J. Magn. Magn. Mater. 321, 754 (2009)

    Article  CAS  Google Scholar 

  9. Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, J.R. Zhang, B.X. Gu, Y.W. Du, The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni–Mn–Sb ferromagnetic shape memory alloys. J. Appl. Phys. 104, 053906 (2008)

    Article  Google Scholar 

  10. C. Jing, Z. Li, H.L. Zhang, J.P. Chen, Y.F. Qiao, S.X. Cao, J.C. Zhang, Martensitic transition and inverse magnetocaloric effect in Co doping Ni–Mn–Sn Heulser alloy. Eur. Phys. J. B 67, 193 (2009)

    Article  CAS  Google Scholar 

  11. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida: Magnetic-field-induced shape recovery by reverse phase transition. Nature 439, 957 (2006)

    Article  CAS  Google Scholar 

  12. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, B. Ouladdiaf, Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys. Rev. B 75, 104414 (2007)

    Article  Google Scholar 

  13. K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, K. Ishida, Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14in high magnetic fields. Appl. Phys. Lett. 89, 182510 (2006)

    Article  Google Scholar 

  14. V.K. Sharma, M.K. Chattopadhyay, K.H.B. Shaeb, A. Chouhan, S.B. Roy, Large magnetoresistance in Ni50Mn34In16alloy. Appl. Phys. Lett. 89, 222509 (2006)

    Article  Google Scholar 

  15. S. Chatterjee, S. Giri, S. Majumdar, S.K. De, Giant magnetoresistance and large inverse magnetocaloric effect in Ni2Mn1. 36Sn0. 64alloy. J. Phys. D: Appl. Phys. 42, 065001 (2009)

    Google Scholar 

  16. V.K. Sharma, M.K. Chattopadhyay, S.B. Roy, Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16: dc magnetization studies. Phys. Rev. B 76, 140401R (2007)

    Article  Google Scholar 

  17. W. Ito, K. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, K. Watanabe, A. Fujita, K. Oikawa, K. Ishida, T. Kanomata, Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 92, 021908 (2008)

    Article  Google Scholar 

  18. M. Khan, I. Dubenko, S. Stadler, N. Ali, Exchange bias behavior in Ni–Mn–Sb Heusler alloys. Appl. Phys. Lett. 91, 072510 (2007)

    Article  Google Scholar 

  19. Z. Li, C. Jing, J. Chen, S. Yuan, S. Cao, J. Zhang, Observation of exchange bias in the martensitic state of Ni50Mn36Sn14Heusler alloy. Appl. Phys. Lett. 91, 112505 (2007)

    Article  Google Scholar 

  20. A.K. Nayak, K.G. Suresh, A.K. Nigam, Observation of enhanced exchange bias behaviour in NiCoMnSb Heusler alloys. J. Phys. D: Appl. Phys. 42, 115004 (2009)

    Article  Google Scholar 

  21. V.D. Buchelnikov, P. Entel, S.V. Taskaev, V.V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M.E. Gruner, S.K. Nayak, Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni–Mn–Xalloys (X = In, Sn, Sb). Phys. Rev. B 78, 184427 (2008)

    Article  Google Scholar 

  22. M.A. Uijttewaal, T. Hickel, J. Neugebauer, M.E. Gruner, P. Entel, Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. Phys. Rev. Lett. 102, 035702 (2009)

    Article  CAS  Google Scholar 

  23. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and Its Applications(Institute of Physics Publishing, Bristol, 2003)

    Book  Google Scholar 

  24. X. Moya, L. Mañosa, A. Planes, S. Aksoy, M. Acet, E.F. Wassermann, T. Krenke, Cooling and heating by adiabatic magnetization in the Ni50Mn34In16magnetic shape-memory alloy. Phys. Rev. B 75, 184412 (2007)

    Article  Google Scholar 

  25. S. Aksoy, T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91, 241916 (2007)

    Article  Google Scholar 

  26. J.R. Stewart, P.P. Deen, K.H. Andersen, H. Schober, J.-F. Barthélémy, J.M. Hillier, A.P. Murani, T. Hayes, B. Lindenau, Disordered materials studied using neutron polarization analysis on the multi-detector spectrometer, D7. J. Appl. Cryst. 42, 69 (2009)

    Article  CAS  Google Scholar 

  27. S. Aksoy, M. Acet, P.P. Deen, L. Mañosa, A. Planes, Magnetic correlations in martensitic Ni–Mn-based Heusler shape-memory alloys: Neutron polarization analysis. Phys. Rev. B 79, 212401 (2009)

    Article  Google Scholar 

  28. A.I. Liechtenstein, M.I. Katsnelson, V.A. Antropov, V.P. Gubanov, Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65 (1987)

    Article  CAS  Google Scholar 

  29. Ebert H, in Fully relativistic band structure calculations for magnetic solids – Formalism and Application, ed. by H. Dreysse. Electronic Structure and Physical Properties of Solids, (Springer, Berlin, 1999) p. 191

    Google Scholar 

  30. http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR

Download references

Acknowledgment

We would like to thank J. Minar and H.C. Herper for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (SPP 1239) and ILL-Grenoble.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Acet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aksoy, S. et al. (2012). Magnetic Interactions Governing the Inverse Magnetocaloric Effect in Martensitic Ni–Mn-Based Shape-memory Alloys. In: Kakeshita, T., Fukuda, T., Saxena, A., Planes, A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20943-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20943-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20942-0

  • Online ISBN: 978-3-642-20943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics