Skip to main content

Basic Problems in Self-Assembling Robots and a Case Study of Segregation on Tribolon Platform

  • Chapter
Bio-Inspired Self-Organizing Robotic Systems

Abstract

It has been a quite while since people realized that self-assembly technique may be a strong method to manufacture 3D micro products. In this contribution, we investigate some major concerns about realizing such a small sized robot. First we introduce the concept of self-assembly and introduce examples both from nature and artificial products. Followed by the main problems in self-assembly which can be seen in various scales, we classify them into four groups - (A) assembly constraint issues, (B) stochastic motion issues, (C) interactions on physical property issues, and (D) engineering issues. Then we show a segregation effect with our developed platform as an example of self-organizing behavior achieved in a distributed manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, J.J., Nagy, Z., Beyeler, F., Nelson, B.J.: Robotics in the small. IEEE Robotics & Automation Magazine 14, 92–103 (2007)

    Article  Google Scholar 

  2. Balch, T.: Hierarchic social entropy: An information theoretic measure of robot group diversity. Autonomous Robots 8, 209–237 (2000)

    Article  Google Scholar 

  3. Boncheva, M., Andreev, S.A., Mahadevan, L., Winkleman, A., Reichman, D.R., Prentiss, M.G., Whitesides, S., Whitesides, G.: Magnetic self-assembly of three-dimensional surfaces from planar sheets. PNAS 102, 3924–3929 (2005)

    Article  Google Scholar 

  4. Boncheva, M., Ferrigno, R., Bruzewicz, D.A., Whitesides, G.M.: Plasticity in self-assembly: Templating generates functionally different circuits from a single precursor. Angew. Chem. Int. Ed. 42, 3368–3371 (2003)

    Article  Google Scholar 

  5. Boncheva, M., Gracias, D.H., Jacobs, H.O., Whitesides, G.M.: Biomimetic self-assembly of a functional asymmetrical electronic device. PNAS 99, 4937–4940 (2002)

    Article  Google Scholar 

  6. Bowden, N., Terfort, A., Carbeck, J., Whitesides, G.M.: Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276, 233–235 (1997)

    Article  Google Scholar 

  7. Bowden, N., Weck, M., Choi, I.S., Whitesides, G.M.: Molecule-mimetic chemistry and mesoscale self-assembly. Acc. Chem. Res. 34, 231–238 (2001)

    Article  Google Scholar 

  8. Breivik, J.: Self-oranization of template-replicating plolymers and the spontaneous rise of genetic information. Entropy 3, 273–279 (2001)

    Article  Google Scholar 

  9. Brown, D.: Tracker video analysis and modeling tool (2009), http://www.cabrillo.edu/~dbrown/tracker/

  10. Cohn, M.B., Kim, C.-J.: Self-assembling electrical networks: An application of micromachining technology. In: International Conference on Solid-State Sensors and Actuators, pp. 490–493 (1991)

    Google Scholar 

  11. Cugat, O., Delamare, J., Reyne, G.: Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magnetics 39(5), 3607–3612 (2003)

    Article  Google Scholar 

  12. Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: Tetris is hard, even to approximate. Technical report, Cornell University Library (2002), arXiv.org

    Google Scholar 

  13. Gracias, D.H., Tien, J., Breen, T.L., Hsu, C., Whitesides, G.M.: Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000)

    Article  Google Scholar 

  14. Griffith, S., Goldwater, D., Jacobson, J.: Robotics: Self-replication from random parts. Nature 437, 636 (2005)

    Article  Google Scholar 

  15. Grzybowski, B.A., Radkowski, M., Campbell, C.J., Lee, J.N., Whitesides, G.M.: Self-assembling fluidic machines. App. phys. lett. 84, 1798–1800 (2004)

    Article  Google Scholar 

  16. Grzybowski, B.A., Stone, H.A., Whitesides, G.M.: Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface. Nature 405, 1033 (2000)

    Article  Google Scholar 

  17. Grzybowski, B.A., Winkleman, A., Wiles, J.A., Brumer, Y., Whitesides, G.M.: Electrostatic self-assembly of macroscopic crystals using contact electrification. Nature 2, 241–245 (2003)

    Article  Google Scholar 

  18. Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: Analogy with chemical kinetics. Artificial Life 1(4), 413–427 (1994)

    Article  Google Scholar 

  19. Ishiguro, A., Shimizu, M., Kawakatsu, T.: A modular robot that exhibits amoebic locomotion. Rob. Aut. Sys. 54, 641–650 (2006)

    Article  Google Scholar 

  20. Klavins, E.: Programmable self-assembly. IEEE Cont. Sys. Mag. 27, 43–56 (2007)

    Article  Google Scholar 

  21. Wilson, M., Melhuish, C., Sendova-Franks, A.: Multi-object segregation: ant-like brood sorting using minimalism robots. In: Proc. Seventh International Conf. on the Simulation of Adaptive Behaviour, Edinburgh, UK, pp. 369–370 (2002)

    Google Scholar 

  22. Mao, C., Thalladi, V.R., Wolfe, D.B., Whitesides, S., Whitesides, G.M.: Dissections: Self-assembled aggregates that spontaneously reconfigure their structures when their environment changes. J. Am. Chem. Soc 124(49), 14508–14509 (2002)

    Article  Google Scholar 

  23. Miyashita, S., Kessler, M., Lungarella, M.: How morphology affects self-assembly in a stochastic modular robot. In: IEEE International Conference on Robotics and Automation (2008)

    Google Scholar 

  24. Motokawa, T.: Time of an elephant, time of a mouse. In: CHUO-KORON-SHINSHA, INC. (1992)

    Google Scholar 

  25. Ngouabeu, A.M.T., Miyashita, S., Füchslin, R.M., Nakajima, K., Göldi, M., Pfeifer, R.: Self-organized segregation effect on water based self-assembling robots. In: Artificial Life 12, Odense, Denmark (2010)

    Google Scholar 

  26. Pelesko, J.A.: SELF ASSEMBLY. Chapman & Hall/CRC, Boca Raton (2007)

    Book  MATH  Google Scholar 

  27. Penrose, L.S.: Self-reproducing. Sci. Amer. 200(6), 105–114 (1959)

    Article  Google Scholar 

  28. Purcell, E.M.: Life at low reynolds number. Amer. J. Phys. 45, 3–11 (1977)

    Article  Google Scholar 

  29. Schreiber, T.: Measuring information transfer. Physical Review Letters 85, 461–464 (2000)

    Article  Google Scholar 

  30. Wilson, M., Melhuish, C., Sendova-Franks, A.B., Scholes, S.R., Franks, N.R., Melhuish, C.: Brood sorting by ants: Two phases and differential diffusion. Animal Behaviour 68, 1095–1106 (2004)

    Article  Google Scholar 

  31. Stambaugh, J., Lathrop, D.P., Ott, E., Losert, W.: Pattern formation in a monolayer of magnetic spheres. Pysical Leview E. 68, 026207-1–026207-5 (2003)

    Google Scholar 

  32. Staniek, M., Lehnertz, K.: Symbolic transfer entropy. Physical Review Letters 100, 158101–158101 (2008)

    Article  Google Scholar 

  33. Sumioka, H., Nakajima, K., Lungarella, M., Pfeifer, R.: Complexity detection based on bidirectional information flow (submitted)

    Google Scholar 

  34. Tsutsumi, D., Murata, S.: Multistate part for mesoscale self-assembly. In: SICE Annual Conference (2007)

    Google Scholar 

  35. White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proc. Int. Conf. on Robotics and Automation, vol. 3, pp. 2888–2893 (2004)

    Google Scholar 

  36. Whitesides, G.M.: The ‘right’ size in nanobiotechnology. Nature 21(10), 1161–1165 (2003)

    Article  Google Scholar 

  37. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2418–2421 (2002)

    Article  Google Scholar 

  38. Wolfe, D.B., Snead, A., Mao, C., Bowden, N.B., Whitesides, G.M.: Mesoscale self-assembly: Capillary interactions when positive and negitive menisci have similar amplitudes. Langmuir 19, 2206–2214 (2003)

    Article  Google Scholar 

  39. Yamaki, M., Higo, J., Nagayama, K.: Size-dependent separation of colloidal particles in two-dimensional convective self-assembly. American Chemical Society 11, 2975–2978 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miyashita, S., Ngouabeu, A.M.T., Füchslin, R.M., Nakajima, K., Audretsch, C., Pfeifer, R. (2011). Basic Problems in Self-Assembling Robots and a Case Study of Segregation on Tribolon Platform. In: Meng, Y., Jin, Y. (eds) Bio-Inspired Self-Organizing Robotic Systems. Studies in Computational Intelligence, vol 355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20760-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20760-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20759-4

  • Online ISBN: 978-3-642-20760-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics