Skip to main content

Graphene Edge Structures: Folding, Scrolling, Tubing, Rippling and Twisting

  • Conference paper
  • First Online:
GraphITA 2011

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Conventional three-dimensional crystal lattices are terminated by surfaces, which can demonstrate complex rebonding and rehybridisation, localised strain and dislocation formation. Two-dimensional crystal lattices, of which graphene is the archetype, are terminated by lines. The additional available dimension at such interfaces opens up a range of new topological interface possibilities. We show that graphene sheet edges can adopt a range of topological distortions depending on their nature. Rehybridisation, local bond reordering, chemical functionalisation with bulky, charged, or multi-functional groups can lead to edge buckling to relieve strain, folding, rolling and even tube formation. We discuss the topological possibilities at a two-dimensional graphene edge, and under what circumstances we expect different edge topologies to occur. Density functional calculations are used to explore in more depth different graphene edge types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivanovskaya, V.V., Zobelli, A., Wagner, P., Heggie, M., Briddon, P.R., Rayson, M.J., Ewels, C.P.: Phys. Rev. Lett. 107, 065502 (2011)

    Article  Google Scholar 

  2. Klein, D.: Chem. Phys. Lett. 217(3), 261 (1994)

    Article  Google Scholar 

  3. Koskinen, P., Malola, S., Häkkinen, H.: Phys. Rev. Lett. 101(11), 115502 (2008)

    Article  Google Scholar 

  4. Liu, Z., Suenaga, K., Harris, P.J.F., Iijima, S.: Phys. Rev. Lett. 102(1), 015501 (2009)

    Article  Google Scholar 

  5. Warner, J., Rümmeli, M.H., Bachmatiuk, A., Büchner, B.: Nanotechnology 21(32), 325702 (2010)

    Article  Google Scholar 

  6. Warner, J.H., Schäffel, F., Rümmeli, M.H., Büchner, B.: Chem. Mat. 21(12), 2418 (2009)

    Article  CAS  Google Scholar 

  7. Huang, J.Y., Ding, F., Yakobson, B.I., Lu, P., Qi, L., Li, J.: Proc. Natl. Acad. Sci. USA 106(25), 10103 (2009)

    Article  CAS  Google Scholar 

  8. Girit, C., Meyer, J., Erni, R., Rossell, M., Kisielowski, C., Yang, L., Park, C., Crommie, M., Cohen, M., Louie, S. et al.: Science 323(5922), 1705 (2009)

    Article  CAS  Google Scholar 

  9. Gass, M., Bangert, U., Bleloch, A., Wang, P., Nair, R., Geim, A.: Nat. Nanotechnol. 3(11), 676 (2008)

    Article  CAS  Google Scholar 

  10. Meyer, J., Geim, A., Katsnelson, M., Novoselov, K., Booth, T., Roth, S.: Nature 446(7131), 60 (2007)

    Article  CAS  Google Scholar 

  11. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Obergfell, D., Roth, S., Girit, C., Zettl, A.: Solid State Commun. 143(1-2), 101 (2007)

    Article  CAS  Google Scholar 

  12. Rotkin, S., Gogotsi, Y.: Mat. Res. Innov. 5(5), 191 (2002)

    Article  CAS  Google Scholar 

  13. Kim, K., Lee, Z., Malone, B., Chan, K.T., Alemán, B., Regan, W., Gannett, W., Crommie, M.F., Cohen, M.L., Zettl, A.: Phys. Rev. B 83, 245433 (2011)

    Article  Google Scholar 

  14. Cranford, S., Sen, D., Buehler, M.: Appl.Phys. Lett. 95, 123121 (2009)

    Article  Google Scholar 

  15. Roy, H., Kallinger, C., Sattler, K.: Surf. Sci. 407(1-3), 1 (1998)

    Article  CAS  Google Scholar 

  16. Feng, J., Qi, L., Huang, J., Li, J.: Phys. Rev. B 80(16), 165407 (2009)

    Article  Google Scholar 

  17. Zhang, J., Xiao, J., Meng, X., Monroe, C., Huang, Y., Zuo, J.: Phys. Rev. Lett. 104(16), 166805 (2010)

    Article  Google Scholar 

  18. Mpourmpakis, G., Tylianakis, E., Froudakis, G.: Nano Lett. 7(7), 1893 (2007)

    Article  CAS  Google Scholar 

  19. Suarez-Martinez, I., Savini, G., Zobelli, A., Heggie, M.: J. Nanosci. Nanotechnol. 7(10), 3417 (2007)

    Article  CAS  Google Scholar 

  20. Xu, Z., Buehler, M.: ACS Nano 4, 2126 (2010)

    Google Scholar 

  21. Martins, B., Galvao, D.: Nanotechnology 21, 075710 (2010)

    Article  CAS  Google Scholar 

  22. Braga, S., Coluci, V., Legoas, S., Giro, R., Galvão, D., Baughman, R.: Nano Lett. 4(5), 881 (2004)

    Article  CAS  Google Scholar 

  23. Fogler, M., Neto, A., Guinea, F.: Phys. Rev. B 81, 161408 (2010)

    Article  Google Scholar 

  24. Chen, Y., Lu, J., Gao, Z.: J. Phys. Chem. C 111(4), 1625 (2007)

    Article  CAS  Google Scholar 

  25. Pan, H., Feng, Y., Lin, J.: Phys. Rev. B 72(8), 085415 (2005)

    Article  Google Scholar 

  26. Wassmann, T., Seitsonen, A., Saitta, A., Lazzeri, M., Mauri, F.: Phys. Rev. Lett. 101(9), 96402 (2008)

    Article  Google Scholar 

  27. Wagner, P., Ewels, C.P., Ivanovskaya, V.V., Briddon, P.R., Pateau, A., Humbert, B.: Phys. Rev. B 84(13), 134110 (2011)

    Article  Google Scholar 

  28. Fasolino, A., Los, J.H., Katsnelson, M.I.: Nat. Mater. 6(11), 858 (2007)

    Article  CAS  Google Scholar 

  29. Thompson-Flagg, R.C., Moura, M.J.B., Marder, M.: EPL Europhys. Lett. 85(4), 46002 (2009)

    Article  Google Scholar 

  30. Cervantes-Sodi, F., Csányi, G., Piscanec, S., Ferrari, A.C.: Phys. Rev. B 77(16), 165427 (2008)

    Article  Google Scholar 

  31. Gunlycke, D., Li, J., Mintmire, J.W., White, C.T.: Nano Lett. 10(9), 3638 (2010)

    Article  CAS  Google Scholar 

  32. Briddon, P., Jones, R.: .. Phys. Status Solidi B 217(1), 131 (2000)

    Article  CAS  Google Scholar 

  33. Rayson, M.J., Briddon, P.R.: Phys. Rev. B 80(20), 205104 (2009)

    Article  Google Scholar 

  34. Rayson, M.: Comput. Phys. Commun. 181(6), 1051 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the NANOSIM-GRAPHENE project \(\hbox{n}^{\circ}\)ANR-09-NANO-016-01 funded by the French National Agency (ANR) in the frame of its 2009 programme in Nanosciences, Nanotechnologies and Nanosystems (P3N2009). We thank the COST Project MP0901 “NanoTP” for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Ivanovskaya or C. P. Ewels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ivanovskaya, V.V., Wagner, P., Zobelli, A., Suarez-Martinez, I., Yaya, A., Ewels, C.P. (2012). Graphene Edge Structures: Folding, Scrolling, Tubing, Rippling and Twisting. In: Ottaviano, L., Morandi, V. (eds) GraphITA 2011. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20644-3_10

Download citation

Publish with us

Policies and ethics