Skip to main content

Pattern Formation in Sea Urchin Endomesoderm as Instructed by Gene Regulatory Network Topologies

  • Conference paper
  • First Online:
Pattern Formation in Morphogenesis

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 15))

Abstract

Animals consist of body parts which are spatially discrete functional units. The spatial separation of these body parts and the diversification of their function and structure are developmentally controlled by gene regulatory networks. The transcription factors and signaling molecules which participate in the spatial organization of a developing organism are components of these networks. The causal linkages in the network consist of the regulatory interactions of each factor with its target genes. Interactions among different regulatory genes are responsible for forming specific spatial patterns of gene expression. The architecture of these regulatory interactions and how they instruct the formation of specific spatial domains is directly determined by the genomic sequence. In the sea urchin embryo, many such spatial domains are established early in development. A well-characterized gene regulatory network underlies the specification of endodermal and mesodermal regulatory domains in this embryo. We review multiple examples which reveal the causal logic underlying genomic control strategies for pattern formation during sea urchin embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boveri T (1907) Zellenstudien VI. Die Entwicklung dispermer Seeigeleier. Ein Beitrag zur Befruchtungslehre und zur Theorie des Kerns. Gustav Fischer, Jena

    Google Scholar 

  2. Laubichler MD, Davidson EH (2008) Boveri’s long experiment: sea urchin merogones and the establishment of the role of nuclear chromosomes in development. Dev Biol 314:1–11

    Article  Google Scholar 

  3. Ransick A, Rast JP, Minokawa T, Calestani C, Davidson EH (2002) New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization. Dev Biol 246:132–147

    Article  Google Scholar 

  4. Oliveri P, Carrick DM, Davidson EH (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 246:209–228

    Article  Google Scholar 

  5. Oliveri P, Tu Q, Davidson EH (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 105:5955–5962

    Article  Google Scholar 

  6. Ransick A, Davidson EH (2006) cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297:587–602

    Article  Google Scholar 

  7. Cameron RA, Fraser SE, Britten RJ, Davidson EH (1991) Macromere cell fates during sea urchin development. Development 113:1085–1091

    Google Scholar 

  8. Ruffins SW, Ettensohn CA (1996) A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122:253–263

    Google Scholar 

  9. Peter IS, Davidson EH (2010) The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 340:188–199

    Article  Google Scholar 

  10. Peter IS, Davidson EH (2011) A gene regulatory network controlling the embryonic specification of endoderm. Nature 474:635–639

    Article  Google Scholar 

  11. Peter IS, Davidson EH (2009) Modularity and design principles in the sea urchin embryo gene regulatory network. FEBS Lett 583:3948–3958

    Article  Google Scholar 

  12. Howard-Ashby M, Materna SC, Brown CT, Tu Q, Oliveri P, Cameron RA, Davidson EH (2006a) High regulatory gene use in sea urchin embryogenesis: implications for bilaterian development and evolution. Dev Biol 300:27–34

    Article  Google Scholar 

  13. Bolouri H, Davidson EH (2003) Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc Natl Acad Sci U S A 100:9371–9376

    Article  Google Scholar 

  14. Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH (2006b) Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev Biol 300:74–89

    Article  Google Scholar 

  15. Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH (2006c) Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus. Dev Biol 300:90–107

    Article  Google Scholar 

  16. Materna SC, Howard-Ashby M, Gray RF, Davidson EH (2006) The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development. Dev Biol 300:108–120

    Article  Google Scholar 

  17. Rizzo F, Fernandez-Serra M, Squarzoni P, Archimandritis A, Arnone MI (2006) Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev Biol 300:35–48

    Article  Google Scholar 

  18. Tu Q, Brown CT, Davidson EH, Oliveri P (2006) Sea urchin Forkhead gene family: phylogeny and embryonic expression. Dev Biol 300:49–62

    Article  Google Scholar 

  19. Ransick A, Davidson EH (1995) Micromeres are required for normal vegetal plate specification in sea urchin embryos. Development 121:3215–3222

    Google Scholar 

  20. Hoerstadius S (1939) The mechanics of sea urchin development studied by operative methods. Biol Rev Camb Philos Soc 14:132–179

    Article  Google Scholar 

  21. Ransick A, Davidson EH (1993) A complete second gut induced by transplanted micromeres in the sea urchin embryo. Science 259:1134–1138

    Article  Google Scholar 

  22. Chuang CK, Wikramanayake AH, Mao CA, Li X, Klein WH (1996) Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction. Dev Genet 19:231–237

    Article  Google Scholar 

  23. Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH, Ettensohn CA (2004) Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131:2947–2956

    Article  Google Scholar 

  24. Smith J, Davidson EH (2009) Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring. Proc Natl Acad Sci U S A 106:18291–18296

    Article  Google Scholar 

  25. Revilla-i-Domingo R, Oliveri P, Davidson EH (2007) A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc Natl Acad Sci U S A 104:12383–12388

    Article  Google Scholar 

  26. Okazaki K (1975) Spicule formation by isolated micromeres of the sea urchin embryo. Am Zool 15:567–581

    Google Scholar 

  27. Revilla-i-Domingo R, Minokawa T, Davidson EH (2004) R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Dev Biol 274:438–451

    Article  Google Scholar 

  28. Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129:1945–1955

    Google Scholar 

  29. Minokawa T, Wikramanayake AH, Davidson EH (2005) cis-regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network. Dev Biol 288:545–558

    Article  Google Scholar 

  30. Range RC, Venuti JM, McClay DR (2005) LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo. Dev Biol 279:252–267

    Article  Google Scholar 

  31. Croce JC, McClay DR (2010) Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137:83–91

    Article  Google Scholar 

  32. Ben-Tabou de-Leon SB, Davidson EH (2010) Information processing at the foxa node of the sea urchin endomesoderm specification network. Proc Natl Acad Sci U S A 107:10103–10108

    Article  Google Scholar 

  33. Smith J, Kraemer E, Liu H, Theodoris C, Davidson E (2008) A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo. Dev Biol 313:863–875

    Article  Google Scholar 

Download references

Acknowledgement

We are pleased to acknowledge support from NIH Grant HD037105.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabelle S. Peter or Eric H. Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peter, I.S., Davidson, E.H. (2013). Pattern Formation in Sea Urchin Endomesoderm as Instructed by Gene Regulatory Network Topologies. In: Capasso, V., Gromov, M., Harel-Bellan, A., Morozova, N., Pritchard, L. (eds) Pattern Formation in Morphogenesis. Springer Proceedings in Mathematics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20164-6_8

Download citation

Publish with us

Policies and ethics