Skip to main content

Micromechanics of 3D Crystallized Protein Structures

  • Chapter
Advances in Soft Matter Mechanics
  • 1574 Accesses

Abstract

In this chapter we develop micromechanics-based models of three-dimensional crystallized protein molecules with tetragonal lysozyme as an example system. While certain crystallographic directions exhibit purely elastic behavior, others exhibit elastoplastic response. The yield stress and critical resolved shear stress are observed to be sensitive to temperature and the amount of intracrystalline water. An increase in temperature and the amount of intracrystalline water molecules leads to a decrease in the critical resolved shear stress of the slip systems and makes the crystal softer. The analysis presented here may be applied to other protein crystal systems as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitesides G M, Boncheva M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99: 4769–4774, 2002.

    Article  ADS  Google Scholar 

  2. He Y, Ye T, Su M, et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 452: 198–202, 2008.

    Article  ADS  Google Scholar 

  3. Rothemund P W K. Folding DNA to create nanoscale shapes and patterns. Nature, 440: 2006.

    Google Scholar 

  4. Hanying L, Carter J D. LaBean T H. Nanofabrication by DNA self-assembly. Materialstoday, 12: 24–32, 2009.

    Google Scholar 

  5. Petka W A, Harden J L, McGrath K P, et al. Reversible hydrogels from selfassembling artificial proteins. Science, 281: 389–392, 1998.

    Article  ADS  Google Scholar 

  6. Holmes T C, Delacalle S, Su X, Rich A, et al. Extensive neurite outgrowth and active neuronal synapses on peptide scaffolds. Proc Natl Acad Sci USA, 97: 6728–6733, 2000.

    Article  ADS  Google Scholar 

  7. Ghadiri M R, Tirrell D A. Chemistry at the crossroads. Curr Opin Chem Biol, 4: 661–662, 2000.

    Article  Google Scholar 

  8. Fernandez-Lopez S, Kim H S, Choi E C, et al. Antibacterial agents based on the cyclic D, L-alphapeptide architecture. Nature, 412: 452–455, 2001.

    Article  ADS  Google Scholar 

  9. Aggeli A, Nyrkova I A, Bell M, et al. Hierarchical self-assembly of chiral rodlike molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA, 98: 11857–11862, 2001.

    Article  ADS  Google Scholar 

  10. Marini D M, Hwang W, Lauffenburger D A, et al. Left handed helical ribbon intermediates in the self-assembly of a beta-sheet peptide. Nano Letters, 2: 295–299, 2002.

    Article  ADS  Google Scholar 

  11. Caplan M R, Moore P N, Zhang S, et al. Self-assembly of a beta-sheet protein governed by relief of electrostatic repulsion relative to van der Waals attraction. Biomacromolecules, 1: 627–631, 2000.

    Article  Google Scholar 

  12. Vauthey S, Santoso S, Gong H, et al. Molecular self assembly of surfactantlike peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA, 99: 5355–5360, 2002.

    Article  ADS  Google Scholar 

  13. Santoso S, Hwang W, Hartman H, et al. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Letters, 2: 687–691, 2002.

    Article  ADS  Google Scholar 

  14. Marsh E N, DeGrado W F. Noncovalent self-assembly of a heterotetrameric diiron protein. Proc Natl Acad Sci USA, 99: 5150–5154, 2002.

    Article  ADS  Google Scholar 

  15. Moffet D A, Case M A, House J C, et al. Carbon monoxide binding by de novo heme proteins derived from designed combinatorial libraries. J Am Chem Soc, 123: 2109–2115, 2001.

    Article  Google Scholar 

  16. Nowak A P, Breedveld V, Pakstis L, et al. Rapidly recovering hydrogel scaffolds from selfassembling diblock copolypeptide amphiphiles. Nature, 417: 424–428, 2002.

    Article  ADS  Google Scholar 

  17. Whaley S R, English D S, Hu E L, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 405: 665–668, 2000.

    Article  ADS  Google Scholar 

  18. Lee SW, Mao C, Flynn C E, et al. Ordering of quantum dots using genetically engineered viruses. Science, 296: 892–895, 2002.

    Article  ADS  Google Scholar 

  19. Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 294: 1684–1687, 2001.

    Article  ADS  Google Scholar 

  20. Hartgerink J D, Beniash E, Stupp S I. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA, 99: 5133–5138, 2002.

    Article  ADS  Google Scholar 

  21. Szela S, Avtges P, Valluzzi R, et al. Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules, 1: 534–542, 2000.

    Article  Google Scholar 

  22. Zhou Y, Wu S, Conticello V P. Genetically directed synthesis and spectroscopic analysis of a protein polymer derived from a flagelliform silk sequence. Biomacromolecules, 2: 111–125, 2001.

    Article  Google Scholar 

  23. Zhou C Z, Confalonieri F, Jacquet M, et al. Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins, 44: 119–122, 2001.

    Article  Google Scholar 

  24. Zhang S, Marini D M, Hwang W, et al. Design of nanostructured biological materials through self-assembly of peptides and proteins. Current Opinion in Chemical Biology, 6: 865–871, 2002.

    Article  Google Scholar 

  25. Sarikaya M, tamerler C, Jen A Y, et al. Molecular biomimetics: Nanotechnology through biology. Nature, 2: 577–585, 2003.

    Article  Google Scholar 

  26. Malek K. Solute transport in orthorhombic lysozyme crystals: A molecular simulation study. Biotechnol. Lett., 29: 1865–1873, 2007.

    Article  Google Scholar 

  27. Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295: 469, 2002.

    Article  ADS  Google Scholar 

  28. St Clair N, Shenoy B, Jacob J D, et al. Cross-linked proteins for vaccine delivery. Proc. Natl. Acad. Sci. USA, 96: 9469–9474, 1999.

    Article  ADS  Google Scholar 

  29. Blundell T L, Jhoti H, Abell C. High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov, 1: 45–54, 2003.

    Article  Google Scholar 

  30. Vilenchik L Z, Griffith J P, St Clair N L, et al. Protein crystals as novel microporous materials. J. Am. Chem. Soc., 120: 4290–4294, 1998.

    Article  Google Scholar 

  31. Margolin A L, Navia M A. Protein crystals as novel catalytic materials. Angew Chem Int Ed, 40: 2204–2222, 2001.

    Article  Google Scholar 

  32. Cvetkovic A, Picioreanu C, Straathof A J J, et al. Quantification of binary diffusion in protein crystals. J. Phys. Chem. B, 109: 10561–10566, 2005.

    Article  Google Scholar 

  33. Daniel R M. The upper limits of enzyme thermal stability. Enzyme and Microbial Technology, 19: 74–79, 1996.

    Article  Google Scholar 

  34. Pechenov S, Shenoy B, Yang M X, et al. Injectable controlled release formulations incorporating protein crystals. Control Release, 96: 149–158, 2004.

    Article  Google Scholar 

  35. Margolin A L, Navia M A. Protein crystals as novel catalytic materials. Angew. Chem., Int. Ed. Engl., 40: 2204–2222, 2001.

    Article  Google Scholar 

  36. Tait S, White E T, Litster J D. Mechanical characterization of protein crystals. Part. Part. Syst. Charact., 25: 266, 2008.

    Article  Google Scholar 

  37. Tachibana M, Kobayashi Y, Shimazu T, et al. Growth and mechanical properties of lysozyme crystals. Journal of Crystal Growth, 198/199: 661–664, 1999.

    Article  Google Scholar 

  38. Zamiri A, De S. Modeling the mechanical response of tetragonal lysozyme crystals. Langmuir, 26: 4251–4257, 2001.

    Article  Google Scholar 

  39. Gilman J J. Micromechanics of Flow in Solids. McGraw-Hill, New York, 195, 1962.

    Google Scholar 

  40. Koizumi H, Tachibana M, Kawamoto H, et al. Temperature dependence of microhardness of tetragonal hen-egg-white lysozyme single crystals. Philosophical Magazine, 84: 2961–2968, 2004.

    Article  ADS  Google Scholar 

  41. Koizumi H, Tachibana M, Kojima K. Elastic constants in tetragonal hen eggwhite lysozyme crystals containing large amount of water. Phys. Rev E, 79: 061917, 2009.

    Article  ADS  Google Scholar 

  42. Speziale S, Jiang F, Caylor C L, et al. Sound velocity and elasticity of tetragonal lysozyme crystals by Brillouin spectroscopy. Biophys. J., 85: 3202, 2003.

    Article  ADS  Google Scholar 

  43. Koizumi, H, Kawamoto, H, Tachibana M, et al. Effect of intracrystalline water on micro-Vickers hardness in tetragonal hen egg-white lysozyme single crystals. J. Phys. D: Appl. Phys., 41: 074019, 2008.

    Article  Google Scholar 

  44. Tachibana M, Koizumi H, Kojima K. Effect of intracrystalline water on longitudinal sound velocity in tetragonal hen-egg-white lysozyme crystals. Phys. Rev. E, 69: 051921, 2004.

    Article  ADS  Google Scholar 

  45. Harata K, Muraki M, Jigami Y. Role of Arg115 in the catalytic action of human lysozyme: X-ray structure of His115 and Glu115 mutants. J. Mol. Biol., 233: 524, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zamiri, A.R., De, S. (2012). Micromechanics of 3D Crystallized Protein Structures. In: Advances in Soft Matter Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19373-6_7

Download citation

Publish with us

Policies and ethics