Skip to main content

Mechano-Electric Feedback in the Heart: Effects on Heart Rate and Rhythm

  • Chapter
  • First Online:
Book cover Heart Rate and Rhythm

Abstract

Cardiac electrical and mechanical activity are closely interrelated not only via the chain of events, commonly referred to as “excitation–contraction coupling” (ECC), that links electrical excitation to contraction, but equally via feedback from the heart’s mechanical environment to the origin and spread of cardiac excitation. The latter has been termed mechano-electric feedback (MEF) and complements ECC to form an intracardiac electro-mechanical regulatory loop. This chapter will review MEF effects on heart rate (HR, number of beats per unit time, usually 1 min) and rhythm (regularity of cardiac contractions), distinguishing between pro- and anti-arrhythmic effects, and elucidate the extent to which stretch-activated ion channels (SAC) may explain observed responses. A concluding section addresses current shortfalls in insight and presents theories regarding the physiological relevance of MEF in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bainbridge FA. The influence of venous filling upon the rate of the heart. J Physiol. 1915;50:65–84.

    PubMed  CAS  Google Scholar 

  2. Donald DE, Shepherd JT. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res. 1978;12:446–69.

    Article  PubMed  CAS  Google Scholar 

  3. Blinks JR. Positive chronotropic effect of increasing right atrial pressure in the isolated mammalian heart. Am J Physiol. 1956;186:299–303.

    PubMed  CAS  Google Scholar 

  4. Deck KA. Dehnungseffekte am spontanschlagenden, isolierten Sinusknoten [effects of stretch on the spontaneously beating, isolated sinus node]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964;280:120–30.

    Article  PubMed  CAS  Google Scholar 

  5. Cooper PJ, Lei M, Cheng LX, Kohl P. Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol. 2000;89:2099–104.

    PubMed  CAS  Google Scholar 

  6. Yasuma F, Hayano J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683–90.

    Article  PubMed  Google Scholar 

  7. Bernardi L, Keller F, Sanders M, Reddy PS, Griffith B, Meno F, et al. Respiratory sinus arrhythmia in the denervated human heart. J Appl Physiol. 1989;67:1447–55.

    PubMed  CAS  Google Scholar 

  8. Bernardi L, Salvucci F, Suardi R, Solda PL, Calciati A, Perlini S, et al. Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise? Cardiovasc Res. 1990;24:969–81.

    Article  PubMed  CAS  Google Scholar 

  9. Casadei B, Moon J, Johnston J, Caiazza A, Sleight P. Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise? J Appl Physiol. 1996;81:556–64.

    PubMed  CAS  Google Scholar 

  10. Brooks CM, Lu HH, Lange G, Mangi R, Shaw RB, Geoly K. Effects of localized stretch of the sinoatrial node region of the dog heart. Am J Physiol. 1966;211:1197–202.

    PubMed  CAS  Google Scholar 

  11. Wilson SJ, Bolter CP. Do cardiac neurons play a role in the intrinsic control of heart rate in the rat? Exp Physiol. 2002;87:675–82.

    Article  PubMed  Google Scholar 

  12. Hagiwara N, Masuda H, Shoda M, Irisawa H. Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol. 1992;456:285–302.

    PubMed  CAS  Google Scholar 

  13. Lei M, Kohl P. Swelling-induced decrease in spontaneous pacemaker activity of rabbit isolated sino-atrial node cells. Acta Physiol Scand. 1998;164:1–12.

    Article  PubMed  CAS  Google Scholar 

  14. Clemo HF, Stambler BS, Baumgarten CM. Persistent activation of a swelling-activated cation current in ventricular myocytes from dogs with tachycardia-induced congestive heart failure. Circ Res. 1998;83:147–57.

    PubMed  CAS  Google Scholar 

  15. Le Guennec JY, Peineau N, Argibay JA, Mongo KG, Garnier D. A new method of attachment of isolated mammalian ventricular myocytes for tension recording: length dependence of passive and active tension. J Mol Cell Cardiol. 1990;22:1083–93.

    Article  PubMed  Google Scholar 

  16. Craelius W, Chen V, el-Sherif N. Stretch activated ion channels in ventricular myocytes. Biosci Rep. 1988;8:407–14.

    Article  PubMed  CAS  Google Scholar 

  17. Cooper PJ, Kohl P. Species- and preparation-dependence of stretch effects on sino-atrial node pacemaking. Ann N Y Acad Sci. 2005;1047:324–35.

    Article  PubMed  Google Scholar 

  18. Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol. 2000;115:583–98.

    Article  PubMed  CAS  Google Scholar 

  19. Stockbridge LL, French AS. Stretch-activated cation channels in human fibroblasts. Biophys J. 1988;54:187–90.

    Article  PubMed  CAS  Google Scholar 

  20. Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res. 2004;94:828–35.

    Article  PubMed  CAS  Google Scholar 

  21. Kohl P, Kamkin AG, Kiseleva IS, Noble D. Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role. Exp Physiol. 1994;79:943–56.

    PubMed  CAS  Google Scholar 

  22. Bolter CP, Wilson SJ. Influence of right atrial pressure on the cardiac pacemaker response to vagal stimulation. Am J Physiol. 1999;276:R1112–7.

    PubMed  CAS  Google Scholar 

  23. Kohl P. Cardiac stretch-activated channels and mechano-electric transduction. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 5th ed. Philadelphia, Elsevier Saunders. 2009;115–26.

    Google Scholar 

  24. Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73.

    Article  PubMed  CAS  Google Scholar 

  25. Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, Burton RA, et al. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res. 2009;104:787–95.

    Article  PubMed  CAS  Google Scholar 

  26. Nesbitt AD, Cooper PJ, Kohl P. Rediscovering commotio cordis. Lancet. 2001;357:1195–7.

    Article  PubMed  CAS  Google Scholar 

  27. Befeler B. Mechanical stimulation of the heart: its therapeutic value in tachyarrhythmias. Chest. 1978;73:832–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kohl P, Hunter P, Noble D. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog Biophys Mol Biol. 1999;71:91–138.

    Article  PubMed  CAS  Google Scholar 

  29. Berdowski J, Tijssen JG, Koster RW. Chest compressions cause recurrence of ventricular fibrillation after the first successful conversion by defibrillation in out-of-hospital cardiac arrest. Circ Arrhythm Electrophysiol. 2010;3:72–8.

    Article  PubMed  Google Scholar 

  30. Levine JH, Guarnieri T, Kadish AH, White RI, Calkins H, Kan JS. Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: evidence for contraction–excitation feedback in humans. Circulation. 1988;77:70–7.

    PubMed  CAS  Google Scholar 

  31. Ninio DM, Saint DA. The role of stretch-activated channels in atrial fibrillation and the impact of intracellular acidosis. Prog Biophys Mol Biol. 2008;97:401–16.

    Article  PubMed  CAS  Google Scholar 

  32. Waxman MB, Wald RW, Finley JP, Bonet JF, Downar E, Sharma AD. Valsalva termination of ventricular tachycardia. Circulation. 1980;62:843–51.

    PubMed  CAS  Google Scholar 

  33. Franz MR, Cima R, Wang D, Profitt D, Kurz R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation. 1992;86:968–78.

    PubMed  CAS  Google Scholar 

  34. Hansen DE, Craig CS, Hondeghem LM. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation. 1990;81:1094–105.

    PubMed  CAS  Google Scholar 

  35. Schlomka G, Hinrichs A. Experimentelle Untersuchungen über den Einfluß stumpfer Brustkorbverletzungen auf das Elektrokardiogramm. Z Gesamte Exp Med. 1932;81:43–61.

    Article  Google Scholar 

  36. Schlomka G, Hinrichs A. Untersuchungen über den Einfluß stumpfer Brustkorbtraumen auf das Elektrokardiogramm (II. Mitteilung). Z Gesamte Exp Med. 1932;83:779–91.

    Article  Google Scholar 

  37. Link MS, Wang PJ, Pandian NG, Bharati S, Udelson JE, Lee MY, et al. An experimental model of sudden death due to low-energy chest-wall impact (commotio cordis). N Engl J Med. 1998;338:1805–11.

    Article  PubMed  CAS  Google Scholar 

  38. Bode F, Franz M, Wilke I, Bonnemeier H, Schunkert H, Wiegand U. Ventricular fibrillation induced by stretch pulse: implications for sudden death due to commotio cordis. J Cardiovasc Electrophysiol. 2006;17:1011–7.

    Article  PubMed  Google Scholar 

  39. Sung D, Mills RW, Schettler J, Narayan SM, Omens JH, McCulloch AD. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart. J Cardiovasc Electrophysiol. 2003;14:739–49.

    Article  PubMed  Google Scholar 

  40. Kaufmann R, Theophile U. Automatie-fördernde Dehnungseffekte an Purkinje-Fäden, Papillarmuskeln und Vorhoftrabekeln von Rhesus-Affen [Automaticity promoting extension effects in Purkinje fibers, papillary muscles and trabeculae carneae of rhesus monkeys]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;297:174–89.

    Article  PubMed  CAS  Google Scholar 

  41. Dominguez G, Fozzard HA. Effect of stretch on conduction velocity and cable properties of cardiac Purkinje fibers. Am J Physiol. 1979;237:C119–24.

    PubMed  CAS  Google Scholar 

  42. Chang SL, Chen YC, Chen YJ, Wangcharoen W, Lee SH, Lin CI, et al. Mechanoelectrical feedback regulates the arrhythmogenic activity of pulmonary veins. Heart. 2007;93:82–8.

    Article  PubMed  Google Scholar 

  43. Wang JH, Thampatty BP. Mechanobiology of adult and stem cells. Int Rev Cell Mol Biol. 2008;271:301–46.

    Article  PubMed  CAS  Google Scholar 

  44. Link MS, Maron BJ, Wang PJ, VanderBrink BA, Zhu W, Estes III NA. Upper and lower limits of vulnerability to sudden arrhythmic death with chest-wall impact (commotio cordis). J Am Coll Cardiol. 2003;41:99–104.

    Article  PubMed  Google Scholar 

  45. Alsheikh-Ali AA, Akelman C, Madias C, Link MS. Endocardial mapping of ventricular fibrillation in commotio cordis. Heart Rhythm. 2008;5:1355–6.

    Article  PubMed  Google Scholar 

  46. Cooper PJ, Epstein A, Macleod IA, Schaaf ST, Sheldon J, Boulin C, et al. Soft tissue impact characterisation kit (STICK) for ex situ investigation of heart rhythm responses to acute mechanical stimulation. Prog Biophys Mol Biol. 2006;90:444–68.

    Article  PubMed  Google Scholar 

  47. Quinn TA, Lee P, Bub G, Epstein A, Kohl P. Regional impact-induced arrhythmia in isolated rabbit heart visualised by optical mapping. Heart Rhythm. 2010;7:S353.

    Google Scholar 

  48. Garny A, Kohl P. Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Ann N Y Acad Sci. 2004;1015:133–43.

    Article  PubMed  Google Scholar 

  49. Seo K, Inagaki M, Nishimura S, Hidaka I, Sugimachi M, Hisada T, et al. Structural heterogeneity in the ventricular wall plays a significant role in the initiation of stretch-induced arrhythmias in perfused rabbit right ventricular tissues and whole heart preparations. Circ Res. 2010;106:176–84.

    Article  PubMed  CAS  Google Scholar 

  50. Parker KK, Lavelle JA, Taylor LK, Wang Z, Hansen DE. Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion. J Appl Physiol. 2004;97:377–83.

    Article  PubMed  Google Scholar 

  51. Lu F, Jun-Xian C, Rong-Sheng X, Jia L, Ying H, Li-Qun Z, et al. The effect of streptomycin on stretch-induced electrophysiological changes of isolated acute myocardial infarcted hearts in rats. Europace. 2007;9:578–84.

    Article  Google Scholar 

  52. Barrabes JA, Garcia-Dorado D, Padilla F, Agullo L, Trobo L, Carballo J, et al. Ventricular fibrillation during acute coronary occlusion is related to the dilation of the ischemic region. Basic Res Cardiol. 2002;97:445–51.

    Article  PubMed  Google Scholar 

  53. Chorro FJ, Trapero I, Guerrero J, Such LM, Canoves J, Mainar L, et al. Modification of ventricular fibrillation activation patterns induced by local stretching. J Cardiovasc Electrophysiol. 2005;16:1087–96.

    Article  PubMed  Google Scholar 

  54. Sachs F. Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem. 1991;104:57–60.

    Article  PubMed  CAS  Google Scholar 

  55. Zabel M, Koller BS, Sachs F, Franz MR. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch. Cardiovasc Res. 1996;32:120–30.

    PubMed  CAS  Google Scholar 

  56. Hansen DE, Borganelli M, Stacy GP, Taylor LK. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ Res. 1991;69:820–31.

    PubMed  CAS  Google Scholar 

  57. Craelius W. Stretch-activation of rat cardiac myocytes. Exp Physiol. 1993;78:411–23.

    PubMed  CAS  Google Scholar 

  58. Bode F, Sachs F, Franz MR. Tarantula peptide inhibits atrial fibrillation. Nature. 2001;409:35–6.

    Article  PubMed  CAS  Google Scholar 

  59. Van Wagoner DR. Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res. 1993;72:973–83.

    PubMed  Google Scholar 

  60. Link MS, Wang PJ, VanderBrink BA, Avelar E, Pandian NG, Maron BJ, et al. Selective activation of the K+ ATP channel is a mechanism by which sudden death is produced by low-energy chest-wall impact (Commotio cordis). Circulation. 1999;100:413–8.

    PubMed  CAS  Google Scholar 

  61. Garan AR, Maron BJ, Wang PJ, Estes 3rd NA, Link MS. Role of streptomycin-sensitive stretch-activated channel in chest wall impact induced sudden death (commotio cordis). J Cardiovasc Electrophysiol. 2005;16:433–8.

    Article  PubMed  Google Scholar 

  62. Kohl P, Bollensdorff C, Garny A. Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol. 2006;91:307–21.

    Article  PubMed  Google Scholar 

  63. Li W, Kohl P, Trayanova N. Induction of ventricular arrhythmias following mechanical impact: a simulation study in 3D. J Mol Histol. 2004;35:679–86.

    Article  PubMed  Google Scholar 

  64. Jie X, Gurev V, Trayanova N. Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circ Res. 2010;106:185–92.

    Article  PubMed  CAS  Google Scholar 

  65. Morris CE, Juranka PF, Lin W, Morris TJ, Laitko U. Studying the mechanosensitivity of voltage-gated channels using oocyte patches. Methods Mol Biol. 2006;322:315–29.

    Article  PubMed  CAS  Google Scholar 

  66. Ter Keurs HE, Wakayama Y, Miura M, Shinozaki T, Stuyvers BD, Boyden PA, et al. Arrhythmogenic Ca2+ release from cardiac myofilaments. Prog Biophys Mol Biol. 2006;90:151–71.

    Article  PubMed  Google Scholar 

  67. Schott E. On ventricular standstill (Adam-Stokes attacks) together with other arrhythmias of temporary nature. Dtsch Arch Klin Med. 1920;131:211–29.

    Google Scholar 

  68. Hyman AS. Resuscitation of the stopped heart by intracardiac therapy. Arch Intern Med. 1930;46:553–68.

    Google Scholar 

  69. Lee HT, Cozine K. Incidental conversion to sinus rhythm from atrial fibrillation during external jugular venous catheterization. J Clin Anesth. 1997;9:664–7.

    Article  PubMed  CAS  Google Scholar 

  70. Scherf D, Bornemann C. Thumping of the precordium in ventricular standstill. Am J Cardiol. 1960;5:30–40.

    Article  PubMed  CAS  Google Scholar 

  71. Don Michael TA, Lond MB, Stanford RL. Precordial percussion in cardiac asystole. Lancet. 1963;1:699.

    Article  Google Scholar 

  72. Pellis T, Kohl P. Antiarrhythmic effects of acute mechanical stimulation. In: Kohl P, Franz MR, Sachs F, editors. Cardiac mechano-electric coupling and arrhythmias. 2nd ed. Oxford, Oxford University Press. 2011; 361–8.

    Google Scholar 

  73. Criley JM, Blaufuss AH, Kissel GL. Cough-induced cardiac compression: self-administered form of cardiopulmonary resuscitation. J Am Med Assoc. 1976;236:1246–50.

    Article  CAS  Google Scholar 

  74. Rajagopalan RS, Appu KS, Sultan SK, Jagannadhan TG, Nityanandan K, Sethuraman S. Precordial thump in ventricular tachycardia. J Assoc Physicians India. 1971;19:725–9.

    PubMed  CAS  Google Scholar 

  75. Haman L, Parizek P, Vojacek J. Precordial thump efficacy in termination of induced ventricular arrhythmias. Resuscitation. 2009;80:14–6.

    Article  PubMed  Google Scholar 

  76. Pellis T, Kette F, Lovisa D, Franceschino E, Magagnin L, Mercante WP, et al. Utility of pre-cordial thump for treatment of out of hospital cardiac arrest: a prospective study. Resuscitation. 2009;80:17–23.

    Article  PubMed  Google Scholar 

  77. Baderman H, Robertson NR. Thumping the precordium. Lancet. 1965;2:1293.

    Article  PubMed  CAS  Google Scholar 

  78. Yakaitis RW, Redding JS. Precordial thumping during cardiac resuscitation. Crit Care Med. 1973;1:22–6.

    Article  PubMed  CAS  Google Scholar 

  79. Gertsch M, Hottinger S, Mettler D, Leupi F, Gurtner HP. Conversion of induced ventricular tachycardia by single and serial chest thumps: a study in domestic pigs 1 week after experimental myocardial infarction. Am Heart J. 1989;118:248–55.

    Article  PubMed  CAS  Google Scholar 

  80. Li W, Kohl P, Trayanova N. Myocardial ischemia lowers precordial thump efficacy: an inquiry into mechanisms using three-dimensional simulations. Heart Rhythm. 2006;3:179–86.

    Article  PubMed  Google Scholar 

  81. Van Wagoner DR, Lamorgese M. Ischemia potentiates the mechanosensitive modulation of atrial ATP-sensitive potassium channels. Ann N Y Acad Sci. 1994;723:392–5.

    Article  PubMed  Google Scholar 

  82. Kaufmann RL, Lab MJ, Hennekes R, Krause H. Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium (cat papillary muscle). Pflugers Arch. 1971;324:100–23.

    Article  PubMed  CAS  Google Scholar 

  83. Cooper PJ, Kohl P. Mechanical modulation of sino-atrial node pacemaking. In: Kohl P, Franz MR, Sachs F, editors. Cardiac mechano-electric feedback and arrhythmias: from pipette to patient. 1st ed. Philadelphia, Elsevier Saunders. 2005;72–82.

    Google Scholar 

Download references

Acknowledgement

Work in the authors’ laboratory is supported by the British Heart Foundation, the UK’s Medical Research Council, Biotechnology and Biological Sciences Research Council, Engineering and Physical Sciences Research Council, and by funding from the EU FP6 and FP7 framework programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Alexander Quinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quinn, T.A., Bayliss, R.A., Kohl, P. (2011). Mechano-Electric Feedback in the Heart: Effects on Heart Rate and Rhythm. In: Tripathi, O., Ravens, U., Sanguinetti, M. (eds) Heart Rate and Rhythm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17575-6_7

Download citation

Publish with us

Policies and ethics