Skip to main content

Next-Generation Nano-based Concrete Construction Products: A Review

  • Chapter
Nanotechnology in Civil Infrastructure

Abstract

Nanotechnology in the construction industry ranked eighth out of ten most significant areas of applications. Although nano-products are costly, the research in nano-technology is gaining momentum with the motivation of immediate profitable return from high value products. This chapter documents potential nano-products that can improve the performance and durability of concrete with high service life. Nano-products have the ability to manipulate structure at the nanometer scale, which leads to the generation of tailored, multifunctional, cementitious composites with superior mechanical performance and durability having a range of novel properties such as: low electrical resistivity, self-sensing capabilities, self-cleaning, self-healing, high ductility, and self-control of cracks. This chapter covers the primary areas of nano-engineering and nano-modifications of cementitious systems such as (i) incorporation of nano-scale spherical materials (e.g., nano-SiO2, TiO2, Al2O3, Fe2O3 etc.) and nano-tubes or fibers [(carbon nano-tube (CNT) and carbon nano-fibers (CNF)] and nano-clay into cementitious materials during mixing, (ii) application of nano-porous thin film on aggregate surfaces before concrete mixing in order to improve interfacial transition zone (ITZ) in concrete, (iii) nano-engineering of concrete pore solution and controlled release of chemical admixtures, (iv) improve the workability in self-consolidated concrete (SCC), (v) further improvement of reactive powder concrete (RPC), (vi) applications in building materials, (vii) nanotechnology based devices etc. The discussion for each area of application covers (i) research findings by different researchers / agencies, (ii) possible mechanisms of improvement, (iii) potential areas of applications. Finally, challenges and future direction of nano-based products in construction field is briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajayan, P.M.: Nanotubes from carbon. Chem. Rev. 99, 1787–1799 (1999)

    Article  Google Scholar 

  • Bartos, P.J.M.: Nanotechnology in construction: A roadmap for development. In: Proceedings of the 2nd International Symposium on Nanotechnology in Construction, Bilbao, Spain, November 13-16, pp. 27–36 (2005)

    Google Scholar 

  • Bentz, D.P., Snyder, K.A., Cass, L.C., Peltz, M.A.: Doubling the Service Life of Concrete. I: Reducing Ion Mobility Using Nanoscale Viscosity Modifiers (2008) (submitted to Cement and Concrete Composites)

    Google Scholar 

  • Bjornstrom, J., Martinelli, A., Matic, A., Borjesson, L., Panas, I.: Accelerating effects of colloidal nanosilica for beneficial calcium-silicate-hydrate formation in cement. Chem. Phys. Lett. 392(1-3), 242–248 (2004)

    Article  Google Scholar 

  • Campillo, I., Guerrero, A., Dolado, J.S., Porro, A., Ibanez, J.A., Goni, S.: Improvement of initial mechanical strength by nanoalumina in belite cements. Materials Letters 61(8-9), 1889–1892 (2007)

    Article  Google Scholar 

  • Cardenas, H.E., Struble, L.J.: Electrokinetic Nanoparticle Treatment of Hardened Cement Paste for Reduction of Permeability. Journal of Materials in Civil Engineering 18(4), 554–560 (2006)

    Article  Google Scholar 

  • Cassar, L., Pepe, C., Tognon, G., Guerrini, G.L., Amadelli, R.: White cement for architectural concrete, possessing photocatalytic properties. In: International Congress on the Chemistry of Cement, Durban, South Africa, vol. 1 (2003); CD

    Google Scholar 

  • Cassar, L.: Photocatalysis of cementitious materials: clean buildings and clean air. MRS Bulletin 29(5), 328–331 (2004)

    Article  Google Scholar 

  • Cervellati, G., Rosa, R.: Use of calcium carbonate particles with high surface area in production of plaster, cement, mortar and concrete. PCT Int. Appl. WO 2006134080, 40 (2006)

    Google Scholar 

  • Chang, T.-P., Shih, J.-Y., Yang, K.-M., Hsiao, T.-C.: Material properties of portland cement paste with nano-montmorillonite. J. Mater. Sci. 42(17), 7478–7487 (2007)

    Article  Google Scholar 

  • Chang, T.-P., Shih, J.-Y., Yang, K.-M., Hsiao, T.-C.: Material properties of portland cement paste with nano-montmorillonite. Journal of Materials Science 42(17), 7478–7487 (2007)

    Article  Google Scholar 

  • Chen, J., Poon, C.-S.: Photocatalytic construction and building materials: From fundamentals to applications. Build Environ. 44(9), 1899–1906 (2009)

    Article  Google Scholar 

  • Dalton, J.S., Janes, P.A., Jones, N.G., Nicholson, J.A., Hallam, K.R., Allen, G.C.: Photocatalytic oxidation of NOx gases using TiO2: A surface spectroscopic approach. Environmental Pollution 120(2), 415–422 (2002)

    Article  Google Scholar 

  • Dham, M., Rushing, T.S., Helferich, R., Marth, T., Sengupta, S., Revur, R., Weiss, C.A., Cummins, K.: Enhancement of reactive powder concrete via nanocement integration. Journal of Transportation Research Record 2(2142), 18–24 (2010)

    Article  Google Scholar 

  • Dolado, J.S., Campillo, I., Erkizia, E., de Miguel, Y.R., de Ibarra, Y.S., Porro, A., Ayuela, A.: Effects of Nanosilica Additions on Cement Pastes. Applications of Nanotechnology in Concrete Design. In: Proceedings of the International Conference Applications of Nanotechnology in Concrete Design, pp. 87–96 (2005)

    Google Scholar 

  • Dolado, J.S., Campillo, I., Porro, A., Sanchez, J.A., Goni, S., Guerrero, A.M., Moragues, A.: An study on the acceleration of belite cement hydration. Cemento-Hormigon 78(897), 24–30 (2007)

    Google Scholar 

  • Fan, J.-J., Tang, J.-Y., Cong, L.-Q., Mcolm, I.J.: Influence of synthetic nano-ZrO2 powder on the strength property of portland cement. Jianzhu Cailiao Xuebao 7(4), 462–467 (2004) (in Chinese)

    Google Scholar 

  • Feng, Q., Liang, C.-D., Liu, G.-M.: Experimental study on cement-based composites with nano-SiO2. Cailiao Kexue Yu Gongcheng Xuebao 22(2), 224–227 (2004) (in Chinese)

    Google Scholar 

  • Flores, I., Sobolev, K., Torres-Martinez, L.M., Cuellar, E.L., Valdez, P.L., Zarazua, E.: Peformance of cement systems with Nano-SiO2 particles produced by suign the sol-gel method. Journal of Transportation Research Record 1(2141), 10–14 (2010)

    Article  Google Scholar 

  • Garboczi, E.J.: Concrete nanoscience and nanotechnology: Definitions and applications. In: Bittnar, Z., Bartos, P.J.M., Nemecek, J., Smilauer, V., Zeman, J. (eds.) Proceedings of the NICOM3, Nanotechnology in construction, 3rd International Symposium on Nanotechnology in Construction, Prague, Czech Republic, pp. 81–88 (2009)

    Google Scholar 

  • Han, B., Guan, X., Ou, J.: Specific resistance and pressure-sensitivity of cement paste admixing with nano-TiO2 and carbon fiber. Guisuanyan Xuebao 32(7), 884–887 (2004) (in Chinese)

    Google Scholar 

  • He, X., Shi, X.: Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials. Transportation Research Board Record. Journal of the Transportation Research Board 2070, 13–21 (2008)

    Article  Google Scholar 

  • Hosseini, P., Booshehrian, A., Farshchi, S.: Influence of nano-SiO2 addition on microstructure and mechanical properties of cement mortars for ferrocement. Journal of Transportation Research Record 1(2141), 15–20 (2010)

    Article  Google Scholar 

  • Li, H., Xiao, H.-g., Ou, J.-p.: A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research 34, 435–438 (2004)

    Article  Google Scholar 

  • Jayapalan, A.R., Lee, B.Y., Fredrich, S.M., Kurtis, K.E.: Influence of additions of anatase TiO2 nanoparticles on early age properties of cement-based materials. Journal of Transportation Research Record 1(2141), 41–46 (2010)

    Article  Google Scholar 

  • Ji, T.: Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cement Concr. Res. 35(10), 1943–1947 (2005)

    Article  Google Scholar 

  • Jo, B.-W., Kim, C.-H., Tae, G.-h., Park, J.-B.: Characteristics of cement mortar with nano-SiO2 particles. Construct Build. Mater. 21(6), 1351–1355 (2007)

    Article  Google Scholar 

  • Jo, B.-W., Kim, C.-H., Lim, J.-H.: Characteristics of cement mortar with nano-SiO2 particles. ACI Materials Journal 104(4), 404–407 (2007)

    Google Scholar 

  • Gaitero, J.J., Campillo, I., Mondal, P., Shah, S.P.: Small Changes Can Make a Great Differences. Journal of Transportation Research Record 1(2141), 1–5 (2010)

    Article  Google Scholar 

  • Kamitani, K., Murata, Y., Tawara, H., Takeuchi, K.: Air purifying pavement: development of photocatalytic concrete blocks. In: Wu, Z. (ed.) International Symposium on Cement and Concrete, pp. 751–755. International Academic Publishers, Beijing (1998)

    Google Scholar 

  • Kantro, D.L.: Influence of water-reducing admixtures on properties of cement pastes-a miniature slump test. Cem. Concr. and Aggre. 2(2), 95–102 (1980)

    Article  Google Scholar 

  • Kuennen, K.: Small Science Will Bring Big Changes To Roads. Better Roads (2004)

    Google Scholar 

  • Kuo, W.-Y., Huang, J.-S., Lin, C.-H.: Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cement Concr. Res. 36(5), 886–895 (2006)

    Article  Google Scholar 

  • Lee, S.J., Kriven, W.M.: Synthesis and hydration study of Portland cement components prepared by the organic steric entrapment method. Mater Struct. 38(1) (2005)

    Google Scholar 

  • Li, G.: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research 34, 1043–1049 (2004)

    Article  Google Scholar 

  • Li, G.Y., Wang, P.M., Zhao, X.: Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon. 43(6), 1239–1245 (2005)

    Article  Google Scholar 

  • Li, G.Y., Wang, P.M., Zhao, X.: Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement & Concrete Composites 29(5), 377–382 (2007)

    Article  MathSciNet  Google Scholar 

  • Li, H., Zhang, M.-h., Ou, J.-p.: Abrasion resistance of concrete containing nano-particles for pavement. Wear 260, 1262–1266 (2006)

    Article  Google Scholar 

  • Li, H., Zhangh, M.-H., Ou, J.-P.: Flexural fatigue performance of concrete containing nano-particles for pavement. International Journal of Fatigue 29(7), 1292–1301 (2007)

    Article  Google Scholar 

  • Li, H., Xiao, H.-g., Yuan, J., Ou, J.: Microstructure of cement mortar with nano-particles. Compos. B Eng. 35(2), 185–189 (2004)

    Article  Google Scholar 

  • Li, H., Xiao, H.-g., Ou, J.-p.: A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement. Concr. Res. 34(3), 435–438 (2004)

    Article  Google Scholar 

  • Li, H., Zhang, M.-p., Ou, J.-p.: Abrasion resistance of concrete containing nano-particles for pavement. Wear 260(11-12), 1262–1266 (2006)

    Article  Google Scholar 

  • Li, H., Zhang, M.H., Ou, J.P.: Flexural fatigue performance of concrete containing nano-particles for pavement. Int. J. Fatig. 29(7), 1292–1301 (2007)

    Article  Google Scholar 

  • Lin, K.L., Chang, W.C., Lin, D.F., Luo, H.L., Tsai, M.C.: Effects of nano-SiO2 and different ash particle sizes on sludge ash-cement mortar. Journal of Environmental Management 88(4), 708–714 (2008)

    Article  Google Scholar 

  • Lin, D.F., Lin, K.L., Chang, W.C., Luo, H.L., Cai, M.Q.: Improvements of nano-SiO2 on sludge/fly ash mortar. Waste Manag. 28(6), 1081–1087 (2008)

    Article  Google Scholar 

  • Li, Z., Wang, H., He, S., Lu, Y., Wang, M.: Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater Lett. 60(3), 356–359 (2006)

    Article  Google Scholar 

  • Li, Z., Wang, H., He, S., Lu, Y., Wang, M.: Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Materials Letters 60, 356–359 (2006)

    Article  Google Scholar 

  • Lu, Z.-y., Xu, X.: Effect of nanometer SiO2 on hydration character of portland cement. Jianzhu Cailiao Xuebao 9(5), 581–585 (2006) (in Chinese)

    Google Scholar 

  • Mann, S.: Nanotechnology and Construction. Nanoforum Report (2006), http://www.nanoforum.org (May 30, 2008)

  • McCoy, M., Betts, J., Norris, A., Saafi, M.: Nanotechonology in construction: Nano materials and devices offer macro improvements in concrete materials. In: RILEM Proceedings, PRO 45 2nd International Symposium on Nanotechnology in Construction (NICOM2), pp. 223–231 (2005)

    Google Scholar 

  • Metaxa, Z.S., Konsta-Gdoutos, M.S., Shah, S.P.: Carbon nanofiber-reinforced cement-based materials. Journal of Transportation Research Record 2(2142), 114–118 (2010)

    Article  Google Scholar 

  • Mondal, P., Shah, S.P., Marks, L.D., Gaitero, J.J.: Comparative study of the effects of microsilica and nanosilica in concrete. Journal of Transportation Research Record 1(2141), 6–9 (2010)

    Article  Google Scholar 

  • Morsy, M.S., Aglan, H.A., Abd El Razek, M.M.: Nanostructured zonolite-cementitious surface compounds for thermal insulation. Construct Build. Mater. 23(1), 515–521 (2009)

    Article  Google Scholar 

  • Munoz, J.F., Meininger, R.C., Youtcheff, J.: New possibilities and future pathways of nanoporous thin film technology to improve concrete performance. Journal of Transportation Research Record 2(2142), 34–41 (2010)

    Article  Google Scholar 

  • Murata, Y., Obara, T., Takeuchi, K.: Air purifying pavement: development of photocatalytic concrete blocks. J. Adv. Oxidat. Technol. 4(2), 227–230 (1999)

    Google Scholar 

  • Murata, Y., Tobinai, K.: Influence of various factors on NOx removal performance of permeability interlocking block based on photocatalysis. Journal of Structural and Construction Engineering 555, 9–15 (2002) (in Japanese)

    Google Scholar 

  • Norris, A., Saafi, M., Romine, P.: Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microeletronic mechanical systems (MEMS) sensors. Construction and Building Materials 22(2), 111–120 (2008)

    Article  Google Scholar 

  • Celik, O., Caroline, Z.: Exploratory investigation of nanomaterials to improve strength and permeability of concrete. Journal of Transportation Research Record 2(2142), 1–8 (2010)

    Google Scholar 

  • Qing, Y., Zenan, Z., Deyu, K., Rongshen, C.: Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construct Build Mater 21(3), 539–545 (2007)

    Article  Google Scholar 

  • Raki, L., Beaudoin, J.J., Mitchell, L.D.: Layered double hyroxides-like materials: nanocomposites for use in concrete. Cem. Concr. Res. 34, 1717–1724 (2004)

    Article  Google Scholar 

  • Raki, L., Beaudoin, J.J.: Controlled release of chemical admixtures. Canadian Patent # CA 2554347, US patent Application US 2007/0022916 A1 (2007)

    Google Scholar 

  • Roco, M.C., Williams, R.S., Alivisatos, P.: Nanotechnology Research Directions: IWGN Research Report. Committee on Technology, Interagency Working Group on Nanoscience, Engineering and Technology (IWGN), National Science and Technology Council (1999)

    Google Scholar 

  • Salvetat, J.-P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W., Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. Mater. Sci. Process 69, 255–260 (1999)

    Article  Google Scholar 

  • Sato, T., Diallo, F.: Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Journal of Transportation Research Record 1(2141), 61–67 (2010)

    Article  Google Scholar 

  • Shih, J.-Y., Chang, T.-P., Hsiao, T.-C.: Effect of nanosilica on characterization of Portland cement composite. Materials Science and Engineering, A: Structural Materials: Properties, Microstructure and Processing A424 (1-2), 266–274 (2006)

    Article  Google Scholar 

  • Skarendahl, A.: Nanotechnology developments for building and protection. Vbyggaren (Swedish Society of Civil and Structural Engineers), vol. 6, pp. 8–11 (2003)

    Google Scholar 

  • Sobolev, K., Flores, I., Torres-Martinez, L.M., Valdez, P.L., Zarazua, E., Cuellar, E.L.: Engineering of SiO2 nanoparticles for optimal performance in nano cement-based materials. In: Bittnar, Z., Bartos, P.J.M., Nemecek, J., Smilauer, V., Zeman, J. (eds.) Nanotechnology in construction: Proceedings of the NICOM3, 3rd International Symposium on Nanotechnology in Construction, Prague, Czech Republic, pp. 139–148 (2009)

    Google Scholar 

  • Srivastava, D., Wei, C., Cho, K.: Nanomechanics of carbon nanotubes and composites. Appl. Mech. Rev. 56, 215–230 (2003)

    Article  Google Scholar 

  • Tang, M., Ba, H., Li, Y.: Study on compound effect of silica fume and nano-SiOx for cementing composite materials. Guisuanyan Xuebao 31(5), 523–527 (2003) (in Chinese)

    Google Scholar 

  • Tregger, N., Pakula, M., Shah, S.P.: Influence of micro- and nano-clays on fresh state of concrete. Journal of Transportation Research Record 1(2141), 68–74 (2010)

    Article  Google Scholar 

  • Vallee, F., Ruot, B., Bonafous, L., Guillot, L., Pimpinelli, N., Cassar, L., Strini, A., Mapelli, E., Schiavi, L., Gobin, C., Andre, H., Moussiopoulos, N., Papadopoulos, A., Bartzis, J., Maggos, T., McIntyre, R., Lehaut-Burnouf, C., Henrichsen, A., Laugesen, P., Amadelli, R., Kotzias, D., Pichat, P.: Cementitious materials for self-cleaning and depolluting facade surfaces. In: RILEM Proceedings (2005), PRO 41 RILEM International Symposium on Environment-Conscious Materials and Systems for Sustainable Development, pp. 337–346 (2004)

    Google Scholar 

  • Wagner, J.-P., Hauck, H.G.: Nanosilica - an additive for High-strength Concrete. Wissenschaftliche Zeitschrift - Hochschule fuer Architektur und Bauwesen Weimar - Universitaet 40(5/6/7), 183–187 (1994) (in German)

    Google Scholar 

  • Ye, Q., Zhang, Z., Chen, R., Ma, C.: Interaction of nano-SiO2 with portlandite at interface between hardened cement paste and aggregate. Guisuanyan Xuebao 31(5), 517–522 (2003) (in Chinese)

    Google Scholar 

  • Ge, Z., Gao, Z.: Applications of Nanotechnology and Nanomaterials in Construction. In: First International Conference on Construction In Developing Countries (ICCIDC–I), Advancing and Integrating Construction Education, Research & Practice, Karachi, Pakistan, August 4-5 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukhopadhyay, A.K. (2011). Next-Generation Nano-based Concrete Construction Products: A Review. In: Gopalakrishnan, K., Birgisson, B., Taylor, P., Attoh-Okine, N.O. (eds) Nanotechnology in Civil Infrastructure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16657-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16657-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16656-3

  • Online ISBN: 978-3-642-16657-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics