Skip to main content

Modulation of Urinary Bladder Innervation: TRPV1 and Botulinum Toxin A

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 2011))

Abstract

The persisting interest around neurotoxins such as vanilloids and botulinum toxin (BoNT) derives from their marked effect on detrusor overactivity refractory to conventional antimuscarinic treatments. In addition, both are administered by intravesical route. This offers three potential advantages. First, intravesical therapy is an easy way to provide high concentrations of pharmacological agents in the bladder tissue without causing unsuitable levels in other organs. Second, drugs effective on the bladder, but inappropriate for systemic administration, can be safely used as it is the case of vanilloids and BoNT. Third, the effects of one single treatment might be extremely longlasting, contributing to render these therapies highly attractive to patients despite the fact that the reasons to the prolonged effect are still incompletely understood. Attractive as it may be, intravesical pharmacological therapy should still be considered as a second-line treatment in patients refractory to conventional oral antimuscarinic therapy or who do not tolerate its systemic side effects. However, the increasing off-label use of these neurotoxins justifies a reappraisal of their pharmacological properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahern GP, Brooks IM, Miyares RL, Wang XB (2005) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signalling. J Neurosci 25:5109–5116

    Article  CAS  PubMed  Google Scholar 

  • Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F, Karanjia R, Barajas-Lopez C, Vanner S, Vergnolle N, Bunnett NW (2006) Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol 575:555–571

    Article  CAS  PubMed  Google Scholar 

  • Amaya F, Oh-hashi K, Naruse Y, Iijima N, Ueda M, Shimosato G, Tominaga M, Tanaka Y, Tanaka M (2003) Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res 963:190–196

    Article  CAS  PubMed  Google Scholar 

  • Ambache N (1949) The peripheral action of Cl. Botulinum toxin. J Physiol 108:127–141

    Google Scholar 

  • Aoki KR (2005) Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology 26:785–793

    Article  CAS  PubMed  Google Scholar 

  • Apostolidis A, Brady CM, Yiangou Y, Davis J, Fowler CJ, Anand P (2005a) Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 65:400–405

    Article  PubMed  Google Scholar 

  • Apostolidis A, Popat R, Yiangou Y, Cockayne D, Ford AP, Davis JB, Dasgupta P, Fowler CJ, Anand P (2005b) Decreased sensory receptors P2X3 and TRPV1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J Urol 174:977–982

    Article  CAS  PubMed  Google Scholar 

  • Apostolidis A, Gonzales GE, Fowler CJ (2006a) Effect of intravesical resiniferatoxin (RTX) on lower urinary tract symptoms, urodynamic parameters, and quality of life of patients with urodynamic increased bladder sensation. Eur Urol 50:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Apostolidis A, Dasgupta P, Fowler CJ (2006b) Proposed mechanism for the efficacy of injected botulinum toxin in the treatment of human detrusor overactivity. Eur Urol 49:644–650

    Article  CAS  PubMed  Google Scholar 

  • Atlas D, Wiser O, Trus M (2001) The voltage-gated Ca2+ channel is the Ca2+ sensor of fast neurotransmitter release. Cell Mol Neurobiol 21:717–731

    Article  CAS  PubMed  Google Scholar 

  • Avelino A, Cruz F (2010) TRPV1 in visceral pain and other visceral disorders. In: Gomtsyan A, Faltynek CR (eds) Vanilloid receptor TRPV1 in drug discovery. Wiley Ed, New York, pp 206–238, Chap 8

    Chapter  Google Scholar 

  • Avelino A, Cruz C, Nagy I, Cruz F (2002) Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 109:787–798

    Article  CAS  PubMed  Google Scholar 

  • Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CSJ, Yeats JC (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107:544–552

    CAS  PubMed  Google Scholar 

  • Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW 4th (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35:721–731

    Article  CAS  PubMed  Google Scholar 

  • Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:1584–1595

    Article  CAS  PubMed  Google Scholar 

  • Binz T, Bade S, Rummel A, Kollewe A, Alves J (2002) Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. Biochemistry 41:1717–1723

    Article  CAS  PubMed  Google Scholar 

  • Birder LA, Kanai AJ, de Groat WC, Kiss S, Nealen ML, Burke NE et al (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci 98:13396–13401

    Article  CAS  PubMed  Google Scholar 

  • Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang F, Ruiz G, de Groat WC, Apadoca G, Watkins S, Caterina MJ (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860

    Article  CAS  PubMed  Google Scholar 

  • Birder LA, Wolf-Johnston A, Griffiths D, Resnick NM (2007) Role of urothelial nerve growth factor in human bladder function. Neurourol Urodyn 26:405–409

    Article  CAS  PubMed  Google Scholar 

  • Blaustein RO, Germann WJ, Finkelstein A, DasGupta BR (1987) The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett 226:115–120

    Article  CAS  PubMed  Google Scholar 

  • Bodó E, Bíró T, Telek A, Czifra G, Griger Z, Tóth BI, Mescalchin A, Ito T, Bettermann A, Kovács L, Paus R (2005) A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol 166:985–998

    Article  PubMed  Google Scholar 

  • Bonnington JK, McNaughton PA (2003) Signalling pathways involved in the sensitisation of mouse nociceptive neurons by nerve growth factor. J Physiol 551:433–446

    Article  CAS  PubMed  Google Scholar 

  • Brady CM, Apostolidis AN, Harper M, Yiangou Y, Beckett A, Jacques TS, Freeman A, Scaravilli F, Fowler CJ, Anand P (2004a) Parallel changes in bladder suburothelial vanilloid receptor TRPV1 and pan-neuronal marker PGP9.5 immunoreactivity in patients with neurogenic detrusor overactivity after intravesical resiniferatoxin treatment. BJU Int 93:770–776

    Article  CAS  PubMed  Google Scholar 

  • Brady CM, Apostolidis A, Yiangou Y, Baecker PA, Ford AP, Freeman A, Jacques TS, Fowler CJ, Anand P (2004b) P2X3-immunoreactive nerve fibres in neurogenic detrusor overactivity and the effect of intravesical resiniferatoxin. Eur Urol 46:247–253

    Article  CAS  PubMed  Google Scholar 

  • Brubaker L, Richter HE, Visco A, Mahajan S, Nygaard I, Braun TM, Barber MD, Menefee S, Schaffer J, Weber AM, Wei J, Pelvic Floor Disorders Network (2008) Refractory idiopathic urge urinary incontinence and botulinum A injection. J Urol 180(1):217–222

    Article  PubMed  Google Scholar 

  • Brunger AT, Rummel A (2009) Receptor and substrate interactions of clostridial neurotoxins. Toxicon 54:550–560

    Article  CAS  PubMed  Google Scholar 

  • Brunger AT, Jin R, Breidenbach MA (2008) Highly specific interactions between botulinum neurotoxins and synaptic vesicle proteins. Cell Mol Life Sci 65:2296–2306

    Article  CAS  PubMed  Google Scholar 

  • Burgen ASV, Dickens F, Zatman LJ (1949) The action of botulinum toxin on the neuro-muscular junction. J Physiol 109:10–24

    CAS  PubMed  Google Scholar 

  • Cai S, Kukreja R, Shoesmith S, Chang TW, Singh BR (2006) Botulinum neurotoxin light chain refolds at endosomal pH for its translocation. Protein J 25:455–462

    Article  CAS  PubMed  Google Scholar 

  • Carlton SM, Coggeshall RE (2001) Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization. Neurosci Lett 310:53–56

    Article  CAS  PubMed  Google Scholar 

  • Carlton SM, Du J, Zhou S (2009) Group II metabotropic glutamate receptor activation on peripheral nociceptors modulates TRPV1 function. Brain Res 1248:86–95

    Article  CAS  PubMed  Google Scholar 

  • Carr MJ, Lollarik M, Meeker SN, Undem BJ (2003) A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J Pharmacol Exp Ther 304:1275–1279

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Lefber A, Malmberg AB, Martin WJ, Trafton J, Petersen KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  CAS  PubMed  Google Scholar 

  • Chai TC, Gray ML, Steers W (1998) The incidence of a positive ice water test in bladder outlet obstructed patients: evidence for bladder neural plasticity. J Urol 160:34–38

    Article  CAS  PubMed  Google Scholar 

  • Chancellor MB, de Groat WC (1999) Intravesical capsaicin and resiniferatoxin therapy: spicing up the ways to treat the overactive bladder. J Urol 162:3–11

    Article  CAS  PubMed  Google Scholar 

  • Chandiramani VA, Peterson T, Duthie GS, Fowler CJ (1996) Urodynamic changes during therapeutic intravesical instillations of capsaicin. Br J Urol 77:792–797

    CAS  PubMed  Google Scholar 

  • Charrua A, Cruz CD, Cruz F, Avelino A (2007) Transient receptor potential vanilloid subfamily 1 is essential for the generation of noxious bladder input and bladder overactivity in cystitis. J Urol 177:1537–1541

    Article  CAS  PubMed  Google Scholar 

  • Charrua A, Reguenga C, Paule CC, Nagy I, Cruz F, Avelino A (2008) Cystitis is associated with TRPV1b-downregulation in rat dorsal root ganglia. NeuroReport 19:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Charrua A, Reguenga C, Cordeiro JM, Correiade-Sá P, Paule C, Nagy I, Cruz F, Avelino A (2009a) Functional transient receptor potential vanilloid 1 is expressed in human urothelial cells. J Urol 182:2944–2950

    Article  CAS  PubMed  Google Scholar 

  • Charrua A, Cruz CD, Narayanan S, Gharat L, Gullapalli S, Cruz F, Avelino A (2009b) GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J Urol 181:379–386

    Article  CAS  PubMed  Google Scholar 

  • Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97:165–174

    Article  CAS  PubMed  Google Scholar 

  • Chen TY, Corcos J, Camel M, Ponsot Y, Tu le M (2005) Prospective, randomized, double-blind study of safety and tolerability of intravesical resiniferatoxin (RTX) in interstitial cystitis (IC). Int Urogynecol J Pelvic Floor Dysfunct 16:293–297

    Article  CAS  PubMed  Google Scholar 

  • Chu CJ, Huang SM, De Petrocellis L, Bisogno T, Ewing SA, Miller JD, Zipkin RE, Daddario N, Appendino G, Di Marzo V, Walker JM (2003) N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J Biol Chem 278:13633–13639

    Article  CAS  PubMed  Google Scholar 

  • Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4, 5)P2-mediated inhibition. Nature 411:957–962

    Article  CAS  PubMed  Google Scholar 

  • Chuang YC, Yoshimura N, Huang CC, Chiang PH, Chancellor MB (2004) Intravesical botulinum toxin a administration produces analgesia against acetic acid induced bladder pain responses in rats. J Urol 172:1529–1532

    Article  CAS  PubMed  Google Scholar 

  • Chuang YC, Chiang PH, Huang CC, Yoshimura N, Chancellor MB (2005) Botulinum toxin type A improves benign prostatic hyperplasia symptoms in patients with small prostates. Urology 66:775–779

    Article  PubMed  Google Scholar 

  • Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–1015

    Article  CAS  PubMed  Google Scholar 

  • Coelho A, Dinis P, Pinto R, Gorgal T, Silva C, Silva A, Silva J, Cruz CD, Cruz F, Avelino A (2009) Mechanisms of action of botulinum toxin type A: distribution of its high affinity binding site and intracellular target in the human bladder. Eur Urol 56:134–140

    Article  PubMed  CAS  Google Scholar 

  • Cruz F, Silva C (2006) Refractory neurogenic detrusor overactivity. Int J Clin Pract 60:22–26

    Article  Google Scholar 

  • Cruz F, Guimarães M, Silva C, Rio ME, Coimbra A, Reis M (1997a) Desensitization of bladder sensory fibres by intravesical capsaicin has long lasting clinical and urodynamic effects in patients with hyperactive or hypersensitive bladder dysfunction. J Urol 157:585–589

    Article  CAS  PubMed  Google Scholar 

  • Cruz F, Guimaräes M, Silva C, Reis M (1997b) Suppression of bladder hyperreflexia by intravesical resiniferatoxin. Lancet 350:640–641

    Article  CAS  PubMed  Google Scholar 

  • da Silva CM, Cruz F (2009) Has botulinum toxin therapy come of age: what do we know, what do we need to know, and should we use it? Curr Opin Urol 19:347–352

    Article  PubMed  Google Scholar 

  • Das A, Chancellor MB, Watanabe T, Sedor J, Rivas DA (1996) Intravesical capsaicin in neurologic impaired patients with detrusor hyperreflexia. J Spinal Cord Med 19:190–193

    CAS  PubMed  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    Article  CAS  PubMed  Google Scholar 

  • de Groat WC (1997) A neurologic basis for the overactive bladder. Urology 50:36–52

    Article  PubMed  Google Scholar 

  • de Haro L, Quetglas S, Iborra C, Lévêque C, Seagar M (2003) Calmodulin-dependent regulation of a lipid binding domain in the v-SNARE synaptobrevin and its role in vesicular fusion. Biol Cell 95:459–464

    Article  PubMed  CAS  Google Scholar 

  • de Paiva A, Meunier FA, Molgó J, Aoki KR, Dolly JO (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci U S A 96:3200–3205

    Article  PubMed  Google Scholar 

  • de Ridder D, Chandiramani V, Dasgupta P, Van Poppel H, Baert L, Fowler CJ (1997) Intravesical capsaicin as a treatment for refractory detrusor hyperreflexia: a dual center study with long-term followup. J Urol 158:2087–2092

    Article  PubMed  Google Scholar 

  • de Séze M, Wiart L, Joseph PA, Dosque JP, Mazaux JM, Barat M (1998) Capsaicin and neurogenic detrusor hyperreflexia. A double blind placebo controlled study in 20 patients with spinal cord lesions. Neurourol Urodyn 17:513–523

    Article  PubMed  Google Scholar 

  • de Sèze M, Wiart L, Ferrière J, de Sèze MP, Joseph P, Barat M (1999) Intravesical instillation of capsaicin in urology: a review of the literature. Eur Urol 36:267–277

    Article  PubMed  Google Scholar 

  • de Sèze M, Wiart L, de Sèze MP, Soyeur L, Dosque JP, Blajezewski S, Moore N, Brochet B, Mazaux JM, Barat M, Joseph PA (2004) Intravesical capsaicin versus resiniferatoxin for the treatment of detrusor hyperreflexia in spinal cord injured patients: a double-blind, randomized, controlled study. J Urol 171:251–255

    Article  PubMed  CAS  Google Scholar 

  • de Sèze M, Gallien P, Denys P, Labat JJ, Serment G, Grise P, Salle JY, Blazejewski S, Hazane C, Moore N, Joseph PA (2006) Intravesical glucidic capsaicin versus glucidic solvent in neurogenic detrusor overactivity: a double blind controlled randomized study. Neurourol Urodyn 25:752–757

    Article  PubMed  CAS  Google Scholar 

  • Dickenson AH, Dray A (1991) Selective antagonism of capsaicin by capsazepine: evidence for a spinal receptor site in capsaicin-induced antinociception. Br J Pharmacol 104:1045–1049

    CAS  PubMed  Google Scholar 

  • Dickson EC, Shevky R (1923) Botulism. Studies on the manner in which the toxin of clostridium botulinum acts upon the body: I. The effect upon the autonomic nervous system. J Exp Med 37:711–731

    Article  CAS  PubMed  Google Scholar 

  • Dinis P, Charrua A, Avelino A, Yaqoob M, Bevan S, Nagy I, Cruz F (2004a) Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci 24:11253–11263

    Article  CAS  PubMed  Google Scholar 

  • Dinis P, Silva J, Ribeiro MJ, Avelino A, Reis M, Cruz F (2004b) Bladder C-fiber desensitization induces a long-lasting improvement of BPH-associated storage LUTS: a pilot study. Eur Urol 46:88–93

    Article  PubMed  Google Scholar 

  • Dinis P, Charrua A, Avelino A, Nagy I, Quintas J, Ribau U, Cruz F (2005) The distribution of sensory fibers immunoreactive for the TRPV1 (capsaicin) receptor in the human prostate. Eur Urol 48:162–167

    Article  PubMed  Google Scholar 

  • Dmitrieva N, McMahon SB (1996) Sensitisation of visceral afferents by nerve growth factor in the adult rat. Pain 66:87–97

    Article  CAS  PubMed  Google Scholar 

  • Docherty RJ, Yeats JC, Bevan S, Boddeke HW (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch 431:828–837

    CAS  PubMed  Google Scholar 

  • Docherty RJ, Yeats JC, Piper AS (1997) Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurons in culture. Br J Pharmacol 121:1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Doggweiler R, Zermann DH, Ishigooka M, Schmidt RA (1998) Botox-induced prostatic involution. Prostate 37:44–50

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592–596

    Article  CAS  PubMed  Google Scholar 

  • Duggan MJ, Quinn CP, Chaddock JA, Purkiss JR, Alexander FC, Doward S, Fooks SJ, Friis LM, Hall YH, Kirby ER, Leeds N, Moulsdale HJ, Dickenson A, Green GM, Rahman W, Suzuki R, Shone CC, Foster KA (2002) Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J Biol Chem 277:34846–34852

    Article  CAS  PubMed  Google Scholar 

  • Dunant Y, Esquerda JE, Loctin F, Marsal J, Muller D (1987) Botulinum toxin inhibits quantal acetylcholine release and energy metabolism in the Torpedo electric organ. J Physiol 385:677–692

    CAS  PubMed  Google Scholar 

  • Dunant Y, Loctin F, Marsal J, Muller D, Parducz A, Rabasseda X (1988) Energy metabolism and quantal acetylcholine release: effects of botulinum toxin, 1-fluoro-2, 4-dinitrobenzene, and diamide in the Torpedo electric organ. J Neurochem 50(2):431–439

    Article  CAS  PubMed  Google Scholar 

  • Dunant Y, Esquerda JE, Loctin F, Marsal J, Muller D (1990) Type A botulinum toxin disorganizes quantal acetylcholine release and inhibits energy metabolism. J Physiol Paris 84(3):211–219

    CAS  PubMed  Google Scholar 

  • Edmunds CW, Long PH (1923) Contribution to the pathologic physiology of botulism J. Am Med Ass 81:542–547

    Google Scholar 

  • Ehren I, Volz D, Farrelly E, Berglund L, Brundin L, Hultling C, Lafolie P (2007) Efficacy and impact of botulinum toxin A on quality of life in patients with neurogenic detrusor overactivity: a randomised, placebo-controlled, double-blind study. Scand J Urol Nephrol 41(4):335–340

    Article  CAS  PubMed  Google Scholar 

  • Eilers H, Lee SY, Hau CW, Logvinova A, Schumacher MA (2007) The rat vanilloid receptor splice variant VR.5’sv blocks TRPV1 activation. NeuroReport 18:969–973

    Article  CAS  PubMed  Google Scholar 

  • Everaerts W, Sepulveda MR, Gevaert T, Roskams T, Nilius B, de Ridder D (2009) Where is TRPV1 expressed in the bladder, do we see the real channel? Naunyn Schmiedebergs Arch Pharmacol 379:421–425

    Article  CAS  PubMed  Google Scholar 

  • Fagerli J, Fraser MO, deGroat WC, Chancellor MB, Flood HD, Smith D, Jordan ML (1999) Intravesical capsaicin for the treatment of interstitial cystitis: a pilot study. Can J Urol 6:737–744

    PubMed  Google Scholar 

  • Ferreira J, da Silva GL, Calixto JB (2004) Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br J Pharmacol 141:787–794

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Montiel AV, Canaves JM, DasGupta BR, Wilson MC, Montal M (1996) Tyrosine phosphorylation modulates the activity of clostridial neurotoxins. J Biol Chem 271:18322–18325

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Montal M (2007a) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282:29604–29611

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Montal M (2007b) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci USA 104:10447–10452

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4:e1000245

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Jewkes D, McDonald WI, Lynn B, de Groat WC (1992) Intravesical capsaicin for neurogenic bladder dysfunction. Lancet 339:1239

    Article  CAS  PubMed  Google Scholar 

  • Fowler CJ, Beck RO, Gerrard S, Betts CD, Fowler CG (1994) Intravesical capsaicin for treatment of detrusor hyperreflexia. J Neurol Neurosurg Psychiatry 57:169–173

    Article  CAS  PubMed  Google Scholar 

  • Fujinaga Y, Takeshi K, Inoue K, Fujita R, Ohyama T, Moriishi K, Oguma K (1995) Type A and B neurotoxin genes in a Clostridium botulinum type AB strain. Biochem Biophys Res Commun 213:737–745

    Article  CAS  PubMed  Google Scholar 

  • Galloux M, Vitrac H, Montagner C, Raffestin S, Popoff MR, Chenal A, Forge V, Gillet D (2008) Membrane interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. J Biol Chem 283:27668–27676

    Article  CAS  PubMed  Google Scholar 

  • Gavva NR, Bannon AW, Surapaneni S, Hovland DN Jr, Lehto SG, Gore A, Juan T, Deng H, Han B, Klionsky L, Kuang R, Le A, Tamir R, Wang J, Youngblood B, Zhu D, Norman MH, Magal E, Treanor JJ, Louis JC (2007) The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci 27:3366–3374

    Article  CAS  PubMed  Google Scholar 

  • Gavva NR, Treanor JJ, Garami A, Fang L, Surapaneni S, Akrami A, Alvarez F, Bak A, Darling M, Gore A, Jang GR, Kesslak JP, Ni L, Norman MH, Palluconi G, Rose MJ, Salfi M, Tan E, Romanovsky AA, Banfield C, Davar G (2008) Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136:202–210

    Article  CAS  PubMed  Google Scholar 

  • Geirsson G, Fall M, Sullivan L (1995) Clinical and urodynamic effects of intravesical capsaicin treatment in patients with chronic traumatic spinal detrusor hyperreflexia. J Urol 154:1825–1829

    Article  CAS  PubMed  Google Scholar 

  • Giannantoni A, Di Stasi SM, Stephen RL, Navarra P, Scivoletto G, Mearini E, Porena M (2002) Intravesical capsaicin versus resiniferatoxin in patients with detrusor hyperreflexia: a prospective randomized study. J Urol 167:1710–1714

    Article  CAS  PubMed  Google Scholar 

  • Giannantoni A, Di Stasi SM, Nardicchi V, Zucchi A, Macchioni L, Bini V, Goracci G, Porena M (2006a) Botulinum-A toxin injections into the detrusor muscle decrease nerve growth factor bladder tissue levels in patients with neurogenic detrusor overactivity. J Urol 175:2341–2344

    Article  CAS  PubMed  Google Scholar 

  • Giannantoni A, Costantini E, Di Stasi SM, Tascini MC, Bini V, Porena M (2006b) Botulinum A toxin intravesical injections in the treatment of painful bladder syndrome: a pilot study. Eur Urol 49(4):704–709

    Article  CAS  PubMed  Google Scholar 

  • Giannantoni A, Porena M, Costantini E, Zucchi A, Mearini L, Mearini E (2008) Botulinum A toxin injection in patients with painful bladder syndrome: 1-year follow-up. J Urol 179:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Grossman HB, Liebert M, Lee IW, Lee SW (1994) Decreased connexin expression and intercellular communication in human bladder cancer cells. Cancer Res 54:3062–3065

    CAS  PubMed  Google Scholar 

  • Gunthorpe MJ, Chizh BA (2009) Clinical development of TRPV1 antagonists: targeting a pivotal point in the pain pathway. Drug Discov Today 14:56–67

    Article  CAS  PubMed  Google Scholar 

  • Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11:946–958

    Article  CAS  PubMed  Google Scholar 

  • Haferkampa A, Schurch B, Reitzb A, Krengela U, Grosse J, Kramer G, Schumachera S, Bastiana PJ, Buttnere R, Mullera SC, Stohrer M (2004) Lack of ultrastructural detrusor changes following endoscopic injection of botulinumtoxintype A in overactive neurogenic bladder. Eur Urol 46:784–791

    Article  Google Scholar 

  • Hermann H, De Petrocellis L, Bisogno T, Bisogno T, Schiano Moriello A, Lutz B, Di Marzo V (2003) Dual effect of cannabinoid CB1 receptor stimulation on a vanilloid VR1 receptor-mediated response. Cell Mol Life Sci 60:607–616

    Article  CAS  PubMed  Google Scholar 

  • Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among Botulinum Neurotoxin-producing clostridial strains. J Bacteriol 189:818–832

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (1991) Capsaicin: cellular target, mechanism of action and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201

    CAS  PubMed  Google Scholar 

  • Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405

    Article  CAS  PubMed  Google Scholar 

  • Humeau Y, Doussau F, Grant NJ, Poulain B (2000) How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82:427–446

    Article  CAS  PubMed  Google Scholar 

  • Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, Oh U (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97:6155–6160

    Article  CAS  PubMed  Google Scholar 

  • Ibañez C, Blanes-Mira C, Fernández-Ballester G, Planells-Cases R, Ferrer-Montiel A (2004) Modulation of botulinum neurotoxin A catalytic domain stability by tyrosine phosphorylation. FEBS Lett 578:121–127

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Sugimoto T (2001) VR1-immunoreactive primary sensory neurons in the rat trigeminal ganglion. Brain Res 890:184–188

    Article  CAS  PubMed  Google Scholar 

  • Igawa Y, Satoh T, Mizusawa H, Seki S, Kato H, Ishizuka O, Nishizawa O (2003) The role of capsaicin-sensitive afferents in autonomic dysreflexia in patients with spinal cord injury. BJU Int 91:637–641

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Kume H, Naruse K, Kondo M, Takeda N, Iwata S, Hasegawa Y, Sokabe M (2008) A novel Ca2+ influx pathway activated by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38:407–413

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Scheller RH (2003) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  CAS  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68

    Article  CAS  PubMed  Google Scholar 

  • Jones RC, Xu L, Gebhart GF (2005) The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 25:10981–10989

    Article  CAS  PubMed  Google Scholar 

  • Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430

    Article  CAS  PubMed  Google Scholar 

  • Jordt SE, Tominaga M, Julius D (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci U S A 97:8134–8139

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U (2004) Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 279:7048–7054

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki M, Kuramoto H, Takaki M (2004) Combined determination with functional and morphological studies of origin of nerve fibers expressing transient receptor potential vanilloid 1 in the myenteric plexus of rat jejunum. Auton Neurosci 116:11–18

    Article  CAS  PubMed  Google Scholar 

  • Kalandakanond S, Coffield JA (2001) Cleavage of SNAP-25 by botulinum toxin type A requires receptor-mediated endocytosis, pH-dependent translocation, and zinc. J Pharmacol Exp Ther 296:980–986

    CAS  PubMed  Google Scholar 

  • Kalsi V, Gonzales G, Popat R, Apostolidis A, Elneil S, Dasgupta P, Fowler CJ (2007) Botulinum injections for the treatment of bladder symptoms of multiple sclerosis. Ann Neurol 62(5):452–457

    Article  CAS  PubMed  Google Scholar 

  • Kark T, Bagi Z, Lizanecz E, Pásztor ET, Erdei N, Czikora A, Papp Z, Edes I, Pórszász R, Tóth A (2008) Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol 73:1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Khairatkar-Joshi N, Szallasi A (2009) TRPV1 antagonists: the challenges for therapeutic targeting. Trends Mol Med 15:14–22

    Article  CAS  PubMed  Google Scholar 

  • Khera M, Somogyi GT, Kiss S, Boone TB, Smith CP (2004) Botulinum toxin A inhibits ATP release from bladder urothelium after chronic spinal cord injury. Neurochem Int 45:987–993

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Rivas DA, Shenot PJ, Green B, Kennelly M, Erickson JR, O’Leary M, Yoshimura N, Chancellor MB (2003) Intravesical resiniferatoxin for refractory detrusor hyperreflexia: a multicenter, blinded, randomized, placebo-controlled trial. J Spinal Cord Med 26:358–363

    PubMed  Google Scholar 

  • Kim JC, Park EY, Hong SH, Seo SI, Park YH, Hwang TK (2005) Changes of urinary nerve growth factor and prostaglandins in male patients with overactive bladder symptom. Int J Urol 12:875–878

    Article  CAS  PubMed  Google Scholar 

  • Koike S, Uno T, Bamba H, Shibata T, Okano H, Hisa Y (2004) Distribution of vanilloid receptors in the rat laryngeal innervation. Acta Otolaryngol 124:515–519

    Article  CAS  PubMed  Google Scholar 

  • Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 17:3525–3537

    CAS  PubMed  Google Scholar 

  • Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13–18

    Article  CAS  PubMed  Google Scholar 

  • Kuenzi FM, Dale N (1996) Effect of capsaicin and analogues on potassium and calcium currents and vanilloid receptors in Xenopus embryo spinal neurones. Br J Pharmacol 119:81–90

    CAS  PubMed  Google Scholar 

  • Kuo HC (2003) Effectiveness of intravesical resiniferatoxin for anticholinergic treatment refractory detrusor overactivity due to nonspinal cord lesions. J Urol 170:835–839

    Article  PubMed  Google Scholar 

  • Kuo HC (2005a) Multiple intravesical instillation of low-dose resiniferatoxin is effective in the treatment of detrusor overactivity refractory to anticholinergics. BJU Int 95:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Kuo HC (2005b) Prostate botulinum A toxin injection: an alternative treatment for benign prostatic obstruction in poor surgical candidates. Urology 65:670–674

    Article  PubMed  Google Scholar 

  • Kuo HC, Liu HT, Yang WC (2006) Therapeutic effect of multiple resiniferatoxin intravesical instillations in patients with refractory detrusor overactivity: a randomized, double-blind, placebo controlled study. J Urol 176:641–645

    Article  CAS  PubMed  Google Scholar 

  • Kuo HC, Liu HT, Chancellor MB (2009) Urinary nerve growth factor is a better biomarker than detrusor wall thickness for the assessment of overactive bladder with incontinence. Neurourol Urodyn 29:482–487

    Google Scholar 

  • Lacy BD, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291:1091–1104

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi S, Joshi PG (2005) Co-activation of P2Y2 receptor and TRPV channel by ATP: implications for ATP induced pain. Cell Mol Neurobiol 25:819–832

    Article  PubMed  Google Scholar 

  • Lalli G, Herreros J, Osborne SL, Montecucco C, Rossetto O, Schiavo G (1999) Functional characterisation of tetanus and botulinum neurotoxins binding domains. J Cell Sci 112:2715–2724

    CAS  PubMed  Google Scholar 

  • Lazzeri M, Beneforti P, Benaim G, Maggi CA, Lecci A, Turini D (1996) Intravesical capsaicin for treatment of severe bladder pain: a randomized placebo controlled study. J Urol 156:947–952

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri M, Beneforti P, Turini D (1997) Urodynamic effects of intravesical resiniferatoxin in humans: preliminary results in stable and unstable detrusor. J Urol 158:2093–2096

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri M, Spinelli M, Beneforti P, Zanollo A, Turini D (1998) Intravesical resiniferatoxin for the treatment of detrusor hyperreflexia refractory to capsaicin in patients with chronic spinal cord diseases. Scand J Urol Nephrol 32:331–334

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri M, Beneforti M, Spinelli A, Zanollo A, Barbagli G, Turini D (2000) Intravesical resiniferatoxin for the treatment of hypersensitive disorder: a randomized placebo controlled study. J Urol 164:676–679

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri M, Vannucchi MG, Zardo C, Spinelli M, Beneforti P, Turini D, Faussone-Pellegrini MS (2004a) Immunohistochemical evidence of vanilloid receptor 1 in normal human urinary bladder. Eur Urol 46:792–798

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri M, Spinelli M, Zanollo A, Turini D (2004b) Intravesical vanilloids and neurogenic incontinence: ten years experience. Urol Int 72:145–149

    Article  PubMed  Google Scholar 

  • Lee SY, Lee JH, Kang KK, Hwang SY, Choi KD, Oh U (2005) Sensitization of vanilloid receptor involves an increase in the phosphorylated form of the channel. Arch Pharm Res 28:405–412

    Article  CAS  PubMed  Google Scholar 

  • Li L, Binz T, Niemann H, Singh BR (2000) Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry 39:2399–2405

    Article  CAS  PubMed  Google Scholar 

  • Lishko PV, Procko E, Jin X, Phels CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Kuo HC (2007a) Intravesical botulinum toxin A injections plus hydrodistension can reduce nerve growth factor production and control bladder pain in interstitial cystitis. Urology 70:463–468

    Article  PubMed  Google Scholar 

  • Liu HT, Kuo HC (2007b) Increased expression of transient receptor potential vanilloid subfamily 1 in the bladder predicts the response to intravesical instillations of resiniferatoxin in patients with refractory idiopathic detrusor overactivity. BJU Int 100:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhang C, Qin F (2005) Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4, 5-biphosphate. J Neurosci 25:4835–4843

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Chancellor MB, Kuo HC (2008) Urinary nerve growth factor levels are elevated in patients with detrusor overactivity and decreased in responders to detrusor botulinum toxin-A injection. Eur Urol 56(4):700–707

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Chancellor MB, Kuo HC (2009) Urinary nerve growth factor levels are elevated in patients with detrusor overactivity and decreased in responders to detrusor botulinum toxin-A injection. Eur Urol 56:700–706

    Article  CAS  PubMed  Google Scholar 

  • López-Alonso E, Canaves J, Arribas M, Casanova A, Marsal J, González-Ros JM, Solsona C (1995) Botulinum toxin type A inhibits Ca(2+)-dependent transport of acetylcholine in reconstituted giant liposomes made from presynaptic membranes from cholinergic nerve terminals. Neurosci Lett 196:37–40

    Article  PubMed  Google Scholar 

  • Lu G, Henderson D, Liu L, Reinhart PH, Simon SA (2005) TRPV1b, a functional human vanilloid receptor splice variant. Mol Pharmacol 67:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Lucioni A, Bales GT, Lotan TL, McGehee DS, Cook SP, Rapp DE (2008) Botulinum toxin type A inhibits sensory neuropeptide release in rat bladder models of acute injury and chronic inflammation. BJU Int 101:366–370

    Article  CAS  PubMed  Google Scholar 

  • Mahmmoud YA (2008) Capsazepine, a synthetic vanilloid that converts the Na, K-ATPase to Na-ATPase. Proc Natl Acad Sci USA 105:1757–1761

    Article  CAS  PubMed  Google Scholar 

  • Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580:2011–2014

    Article  CAS  PubMed  Google Scholar 

  • Maria G, Brisinda G, Civello IM, Bentivoglio AR, Sganga G, Albanese A (2003) Relief by botulinum toxin of voiding dysfunction due to benign prostatic hyperplasia: results of a randomized, placebo-controlled study. Urology 62:259–264

    Article  PubMed  Google Scholar 

  • Marsal J, Egea G, Solsona C, Rabasseda X, Blasi J (1989) Botulinum toxin type A blocks the morphological changes induced by chemical stimulation on the presynaptic membrane of Torpedo synaptosomes. Proc Natl Acad Sci USA 86:372–376

    Article  CAS  PubMed  Google Scholar 

  • McCroskey LM, Hatheway CL, Woodruff BA, Greenberg JA, Jurgenson P (1991) Type F botulism due to neurotoxigenic Clostridium baratii from an unknown source in an adult. J Clin Microbiol 29(11):2618–2620

    CAS  PubMed  Google Scholar 

  • McIntyre P, McLatchie LM, Chambers A, Phillips E, Clarke M, Savidge J, Toms C, Peacock M, Shah K, Winter J, Weerasakera N, Webb M, Rang HP, Bevan S, James IF (2001) Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). Br J Pharmacol 132:1084–1094

    Article  CAS  PubMed  Google Scholar 

  • McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Söllner TH, Rothman JE (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407(6801):153–159

    Article  CAS  PubMed  Google Scholar 

  • McVary KT, McKenna KE, Lee C (1998) Prostate innervation. Prostate Suppl 8:2–13

    Article  CAS  PubMed  Google Scholar 

  • McVey DC, Vigna SR (2001) The capsaicin VR1 receptor mediates substance P release in toxin A-induced enteritis in rats. Peptides 22:1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Karasawa T, Zou K, Kuang X, Wang X, Lu C, Wang C, Yamakawa K, Nakamura S (1997) Characterization of a neurotoxigenic Clostridium butyricum strain isolated from the food implicated in an outbreak of food-borne type E botulism. J Clin Microbiol 35(8):2160–2162

    CAS  PubMed  Google Scholar 

  • Meunier FA, Schiavo G, Molgó J (2002) Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris 96:105–113

    Article  CAS  PubMed  Google Scholar 

  • Mezey E, Tóth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, Guo A, Blumberg PM, Szallasi A (2000) Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci USA 97:3655–3660

    Article  CAS  PubMed  Google Scholar 

  • Michael GJ, Priestley JV (1999) Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J Neurosci 19:1844–1854

    CAS  PubMed  Google Scholar 

  • Mizumura K, Sugiur T, Koda H, Katanosaka K, Kumar BR, Giron R, Tominaga M (2005) Pain and bradykinin receptors – sensory transduction mechanism in the nociceptor terminals and expression change of bradykinin receptors in inflamed condition. Nihon Shinkei Seishin Yakurigaku Zasshi 25:33–38

    CAS  PubMed  Google Scholar 

  • Mohanty S, Dhawan B, Chaudhry R (2001) Botulism: an update. Indian J Med Microbiol 19:35–43

    CAS  PubMed  Google Scholar 

  • Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloids receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280:13424–13432

    Article  CAS  PubMed  Google Scholar 

  • Montal M (2009) Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Toxicon 54:565–569

    Article  CAS  PubMed  Google Scholar 

  • Morenilla-Palao C, Planells-Cases R, García-Sanz N, Ferrer-Montiel A (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279:25665–25672

    Article  CAS  PubMed  Google Scholar 

  • Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C, Noguchi K, Tominaga M (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 23:6058–6062

    CAS  PubMed  Google Scholar 

  • Mukerji G, Yiangou Y, Agarwal SK, Anand P (2006) Transient receptor potential vanilloid receptor subtype 1 in painful bladder syndrome and its correlation with pain. J Urol 176:797–801

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Garcia-Segura LM, Parducz A, Dunant Y (1987) Brief occurrence of a population of presynaptic intramembrane particles coincides with transmission of a nerve impulse. Proc Natl Acad Sci USA 84:590–594

    Article  CAS  PubMed  Google Scholar 

  • Novakova-Tousova K, Vyklicky L, Susankova K, Benedikt J, Samad A, Teisinger J, Vlachova V (2007) Functional changes in the vanilloids receptor subtype 1 channel during and after acute desensitization. Neuroscience 149:144–154

    Article  CAS  PubMed  Google Scholar 

  • Oh GS, Pae HO, Seo WG, Kim NY, Pyun KH, Kim IK, Shin M, Chung HT (2001) Capsazepine, a vanilloid receptor antagonist, inhibits the expression of inducible nitric oxide synthase gene in lipopolysaccharide-stimulated RAW264.7 macrophages through the inactivation of nuclear transcription factor-kappa B. Int Immunopharmacol 1:777–784

    Article  CAS  PubMed  Google Scholar 

  • Ohta T, Ikemi Y, Murakami M, Imagawa T, Otsuguro K, Ito S (2006) Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons. J Physiol 576:809–822

    Article  CAS  PubMed  Google Scholar 

  • Ost D, Roskams T, Van Der Aa F, De Ridder D (2002) Topography of the vanilloid receptor in the human bladder: more than just the nerve fibers. J Urol 168:293–297

    Article  PubMed  Google Scholar 

  • Payne CK, Mosbaugh PG, Forrest JB, Evans RJ, Whitmore KE, Antoci JP, Perez-Marrero R, Jacoby K, Diokno AC, O’Reilly KJ, Griebling TL, Vasavada SP, Yu AS, Frumkin LR (2005) Intravesical resiniferatoxin for the treatment of interstitial cystitis: a randomized, double-blind, placebo controlled trial. J Urol 173:1590–1594

    Article  CAS  PubMed  Google Scholar 

  • Peng CH, Kuo HC (2007) Multiple intravesical instillations of low-dose resiniferatoxin in the treatment of refractory interstitial cystitis. Urol Int 78:78–81

    Article  CAS  PubMed  Google Scholar 

  • Perkins MN, Campbell EA (1992) Capsazepine reversal of the antinociceptive action of capsaicin in vivo. Br J Pharmacol 107:329–333

    CAS  PubMed  Google Scholar 

  • Pinto R, Silva A, Lopes T, Silva J, Silva C, Cruz F, Dinis P (2009) Intra-trigonal injection of botulinum toxin A in patients with bladder pain syndrome. Results at 9-months of follow-up. J Urol 181:20

    Article  Google Scholar 

  • Pinto R, Lopes T, Frias B, Silva A, Silva JA, Silva CM, Cruz C, Cruz F, Dinis P (2010) Trigonal injection of botulinum toxin A in patients with refractory bladder pain syndrome/interstitial cystitis. Eur Urol 58:360–365

    Article  CAS  PubMed  Google Scholar 

  • Piper AS, Yeats JC, Bevan S, Docherty RJ (1999) A study of the voltage dependence of capsaicin-activated membrane currents in rat sensory neurones before and after acute desensitization. J Physiol 518:721–733

    Article  CAS  PubMed  Google Scholar 

  • Popoff M, Marvaud JC (1999) Structural and genomic features of clostridial neurotoxins. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 202–228

    Google Scholar 

  • Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990

    Article  CAS  PubMed  Google Scholar 

  • Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    Article  CAS  PubMed  Google Scholar 

  • Prescott GR, Gorleku OA, Greaves J, Chamberlain LH (2009) Palmitoylation of the synaptic vesicle fusion machinery. J Neurochem 110:1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Purkiss J, Welch M, Doward S, Foster K (2000) Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Biochem Pharmacol 59:1403–1406

    Article  CAS  PubMed  Google Scholar 

  • Rapp DE, Turk KW, Bales GT, Cook SP (2006) Botulinum toxin type A inhibits calcitonin gene-related peptide release from isolated rat bladder. J Urol 175:1138–1142

    Article  CAS  PubMed  Google Scholar 

  • Reitz A, Stöhrer M, Kramer G, Del Popolo G, Chartier-Kastler E, Pannek J, Burgdörfer H, Göcking K, Madersbacher H, Schumacher S, Richter R, von Tobel J, Schurch B (2004) European experience of 200 cases treated with botulinum-A toxin injections into the detrusor muscle for urinary incontinence due to neurogenic detrusor overactivity. Eur Urol 45:510–515

    Article  CAS  PubMed  Google Scholar 

  • Rigoni M, Caccin P, Johnson EA, Montecucco C, Rossetto O (2001) Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. Biochem Biophys Res Commun 288:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Rohacs T, Thyagarajan B, Lukacs V (2008) Phospholipase C mediated modulation of TRPV1 channels. Mol Neurobiol 37:153–163

    Article  CAS  PubMed  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51:631–643

    Article  CAS  PubMed  Google Scholar 

  • Sahai A, Khan MS, Dasgupta P (2007) Efficacy of botulinum toxin-A for treating idiopathic detrusor overactivity: results from a single center, randomized, double-blind, placebo-controlled trial. J Urol 177:2231–2236

    Article  CAS  PubMed  Google Scholar 

  • Sakaba T, Stein A, Jahn R, Neher E (2005) Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science 309:491–494

    Article  CAS  PubMed  Google Scholar 

  • Santos-Buelga JA, Collins MD, East AK (1998) Characterization of the genes encoding the botulinum neurotoxin complex in a strain of Clostridium botulinum producing type B and F neurotoxins. Curr Microbiol 37:312–318

    Article  CAS  PubMed  Google Scholar 

  • Schaible HG, Del Rosso A, Matucci-Cerinic M (2005) Neurogenic aspects of inflammation. Rheum Dis Clin North Am 31:77–101

    Article  PubMed  Google Scholar 

  • Schiavo G, Rossetto O, Benfenati F, Poulain B, Montecucco C (1994) Tetanus and botulinum neurotoxins are zinc proteases specific for components of the neuroexocytosis apparatus. Ann NY Acad Sci 710:65–75

    Article  CAS  PubMed  Google Scholar 

  • Schmid DM, Sauermann P, Werner M, Schuessler B, Blick N, Muentener M, Strebel RT, Perucchini D, Scheiner D, Schaer G, John H, Reitz A, Hauri D, Schurch B (2006) Experience with 100 cases treated with botulinum-A toxin injections in the detrusor muscle for idiopathic overactive bladder syndrome refractory to anticholinergics. J Urol 176:177–185

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Baukloh H, Weiss C, Stolze T, Herholz J, Stürzebecher B, Miller K, Knispel HH (2005) Botulinum-A toxin detrusor and sphincter injection in treatment of overactive bladder syndrome: objective outcome and patient satisfaction. Eur Urol 48:984–990

    Article  PubMed  Google Scholar 

  • Schulte-Baukloh H, Zurawski TH, Knispel HH, Miller K, Haferkamp A, Dolly JO (2007) Persistence of the synaptosomal-associated protein-25 cleavage product after intradetrusor botulinum toxin A injections in patients with myelomeningocele showing an inadequate response to treatment. BJU Int 100:1075–1080

    CAS  PubMed  Google Scholar 

  • Schurch B, de Sèze M, Denys P, Chartier-Kastler E, Haab F, Everaert K, Plante P, Perrouin-Verbe B, Kumar C, Fraczek S, Brin MF, Botox Detrusor Hyperreflexia Study Team (2005) Botulinum toxin type A is a safe and effective treatment for neurogenic urinary incontinence: results of a single treatment, randomized, placebo controlled 6-month study. J Urol 174(1):196–200

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Cho H, Hwang SW, Jung J, Shin CY, Lee SY, Kim SH, Lee MG, Choi YH, Kim J, Haber NA, Reichling DB, Khasar S, Levine JD, Oh U (2002) Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci USA 99:10150–10155

    Article  CAS  PubMed  Google Scholar 

  • Silva C, Rio ME, Cruz F (2000) Desensitization of bladder sensory fibers by intravesical resiniferatoxin, a capsaicin analog: long-term results for the treatment of detrusor hyperreflexia. Eur Urol 38:444–452

    Article  CAS  PubMed  Google Scholar 

  • Silva C, Ribeiro MJ, Cruz F (2002) The effect of intravesical resiniferatoxin in patients with idiopathic detrusor instability suggests that involuntary detrusor contractions are triggered by C-fiber input. J Urol 168:575–579

    Article  CAS  PubMed  Google Scholar 

  • Silva C, Silva J, Ribeiro MJ, Avelino A, Cruz F (2005) Urodynamic effect of intravesical resiniferatoxin in patients with neurogenic detrusor overactivity of spinal origin: results of a double-blind randomized placebo-controlled trial. Eur Urol 48:650–655

    Article  CAS  PubMed  Google Scholar 

  • Silva C, Silva J, Castro H, Reis F, Dinis P, Avelino A, Cruz F (2007) Bladder sensory desensitization decreases urinary urgency. BMC Urol 11:7–9

    Google Scholar 

  • Silva A, Cruz CD, Charrua A, Pinto R, Avelino A, Silva C, Dinis P, Cruz F (2008a) GRC 6211, a new oral TRPV1 antagonist, decreases neurogenic detrusor overactivity in a rat model of spinal cord transection. Neurourol Urodyn 27(7):597–598

    Google Scholar 

  • Silva J, Pinto R, Carvallho T, Coelho A, Avelino A, Dinis P, Cruz F (2008b) Mechanisms of prostate atrophy after glandular botulinum neurotoxin type A injection: an experimental study in the rat. Eur Urol 56:134–141

    Article  PubMed  CAS  Google Scholar 

  • Silva J, Silva C, Saraiva L, Silva A, Pinto R, Dinis P, Cruz F (2008c) Intraprostatic botulinum toxin type A injection in patients unfit for surgery presenting with refractory urinary retention and benign prostatic enlargement. Effect on prostate volume and micturition resumption. Eur Urol 53:153–159

    Article  CAS  PubMed  Google Scholar 

  • Simpson LL (1981) The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev 33:155–188

    CAS  PubMed  Google Scholar 

  • Simpson LL (1984) Botulinum toxin and tetanus toxin recognize similar membrane determinants. Brain Res 305(1):177–180

    Article  CAS  PubMed  Google Scholar 

  • Simpson LL, Maksymowych AB, Hao S (2001) The role of zinc binding in the biological activity of botulinum toxin. J Biol Chem 276:27034–27041

    Article  CAS  PubMed  Google Scholar 

  • Smith CP, Radziszewski P, Borkowski A, Somogyi GT, Boone TB, Chancellor MB (2004) Botulinum toxin a has antinociceptive effects in treating interstitial cystitis. Urology 64:871–875

    Article  PubMed  Google Scholar 

  • Smith CP, Gangitano DA, Munoz A, Salas NA, Boone TB, Aoki KR, Francis J, Somogyi GT (2008) Botulinum toxin type A normalizes alterations in urothelial ATP and NO release induced by chronic spinal cord injury. Neurochem Int 52:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD, Travers JB (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217–222

    Article  CAS  PubMed  Google Scholar 

  • Ständer S, Moormann C, Schumacher M, Buddenkotte J, Artuc M, Shpacovitch V, Brzoska T, Lippert U, Henz BM, Luger TA, Metze D, Steinhoff M (2004) Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 13:129–139

    Article  PubMed  Google Scholar 

  • Stein EA, Fuller SA, Edgemond WS, Campbell WB (1996) Physiological and behavioural effects of the endogenous cannabinoid, arachidonylethanolamide (anandamide), in the rat. Br J Pharmacol 119:107–114

    CAS  PubMed  Google Scholar 

  • Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522

    Article  CAS  PubMed  Google Scholar 

  • Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, Bannon AW, Norman MH, Louis JC, Treanor JJS, Gavva NR, Romanovsky AA (2007) Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci 27:7459–7468

    Article  CAS  PubMed  Google Scholar 

  • Strauss HM, Keller S (2008) Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs. Handb Exp Pharmacol 186:461–482

    Article  CAS  PubMed  Google Scholar 

  • Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Tominaga M, Katsuya H, Mizumura K (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol 88:544–548

    CAS  PubMed  Google Scholar 

  • Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C, Lord B, Gonzales L, Hoey K, Rizzolio M, Bogenstaetter M, Codd EE, Lee DH, Zhang SP, Chaplan SR, Carruthers NI (2005) Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem 48:1857–1872

    Article  CAS  PubMed  Google Scholar 

  • Szallasi A, Goso C, Blumberg PM, Manzini S (1993) Competitive inhibition by capsazepine of [3H]Resiniferatoxin binding to central (spinal cord and dorsal root ganglia) and peripheral (urinary bladder and airways) vanilloid (capsaicin) receptors in the rat. J Pharmcol Exp Ther 267:728–733

    CAS  Google Scholar 

  • Szallasi A, Cruz F, Geppetti P (2006) TRPV1: a therapeutic target for novel analgesic drugs? Trends Mol Med 12(11):545–554

    Google Scholar 

  • Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of concept. Nat Rev Drug Discov 6:357–372

    Article  CAS  PubMed  Google Scholar 

  • Tang HB, Inoue A, Oshita K, Nakata Y (2004) Sensitization of vanilloid receptor 1 induced by bradykinin via the activation of second messenger signaling cascades in rat primary afferent neurons. Eur J Pharmacol 498:37–43

    Article  CAS  PubMed  Google Scholar 

  • Thesleff S, Molgó J, Tågerud S (1990) Trophic interrelations at the neuromuscular junction as revealed by the use of botulinal neurotoxins. J Physiol Paris 84:167–173

    CAS  PubMed  Google Scholar 

  • Tohda C, Sasaki M, Konemura T, Sasamura T, Itoh M, Kuraishi Y (2001) Axonal transport of VR1 capsaicin receptor mRNA in primary afferents and its participation in inflammation-induced increase in capsaicin sensitivity. J Neurochem 76:1628–1635

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98:6951–6956

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M, Numazaki M, Iida T, Tominaga T (2003) Molecular mechanisms of nociception. Nihon Shinkei Seishin Yakurigaku Zasshi 23:139–147

    CAS  PubMed  Google Scholar 

  • Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L, Blumberg PM (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135:162–168

    Article  PubMed  CAS  Google Scholar 

  • Turner H, Fleig A, Stokes A, Kinet JP, Penner R (2003) Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release channel activity. Biochem J 371:341–350

    Article  CAS  PubMed  Google Scholar 

  • Tyagi V, Philips BJ, Su R, Smaldone MC, Erickson VL, Chancellor MB, Yoshimura N, Tyagi P (2009) Differential expression of functional cannabinoid receptors in human bladder detrusor and urothelium. J Urol 181(4):1932–1938

    Article  CAS  PubMed  Google Scholar 

  • Urban L, Dray A (1991) Capsazepine, a novel capsaicin antagonist, selectively antagonises the effects of capsaicin in the mouse spinal cord in vitro. Neurosci Lett 134:9–11

    Article  CAS  PubMed  Google Scholar 

  • Van Buren JJ, Bhat S, Rotello R, Pauza ME, Premkumar LS (2005) Sensitization and translocation of TRPV1 by insulin and IGF-I. Mol Pain 1:17–28

    Article  PubMed  CAS  Google Scholar 

  • Vassilieva EV, Nusrat A (2008) Vesicular trafficking: molecular tools and targets. Methods Mol Biol 440:3–14

    Article  CAS  PubMed  Google Scholar 

  • Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534:813–825

    Article  CAS  PubMed  Google Scholar 

  • Veronesi B, Oortgiesen M, Roy J, Carter JD, Simon SA, Gavett SH (2000) Vanilloid (capsaicin) receptors influence inflammatory sensitivity in response to particulate matter. Toxicol Appl Pharmacol 169:66–76

    Article  CAS  PubMed  Google Scholar 

  • Vetter I, Wyse BD, Monteith GR, Roberts-Thomson SJ, Cabot PJ (2006) The mu opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol Pain 2:22–37

    Article  PubMed  CAS  Google Scholar 

  • Vetter I, Cheng W, Peiris M, Wyse BD, Roberts-Thomson SJ, Zheng J, Monteith GR, Cabot PJ (2008) Rapid, opioid-sensitive mechanisms involved in transient receptor potential vanilloid 1 sensitization. J Biol Chem 283:19540–19550

    Article  CAS  PubMed  Google Scholar 

  • Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford AP, Burnstock G (2001) P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 21:5670–5677

    CAS  PubMed  Google Scholar 

  • Voets T, Nilius B (2007) Modulation of TRPs by PIPs. J Physiol 582:939–944

    Article  CAS  PubMed  Google Scholar 

  • Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026–8033

    CAS  PubMed  Google Scholar 

  • Vos MH, Neelands TR, McDonald HA, Choi W, Kroeger PE, Puttfarcken PS, Faltynek CR, Moreland RB, Han P (2006) TRPV1b overexpression negatively regulates TRPV1 responsiveness to capsaicin, heat and low pH in HEK293 cells. J Neurochem 99:1088–1102

    Article  CAS  PubMed  Google Scholar 

  • Vyklický L, Nováková-Tousová K, Benedikt J, Samad A, Touska F, Vlachová V (2008) Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin. Physiol Res 57:S59–S68

    PubMed  Google Scholar 

  • Wagman J (1954) Isolation and sedimentation study of low molecular weight forms of type A botulinus toxin. Arch Biochem Biophys 50:104–112

    Article  CAS  PubMed  Google Scholar 

  • Walker KM, Urban L, Medhurst SJ, Patel S, Panesar M, Fox AJ, McIntyre P (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304:56–62

    Article  CAS  PubMed  Google Scholar 

  • Walpole CS, Bevan S, Bovermann G, Boelsterli JJ, Breckenridge R, Davies JW, Hughes GA, James I, Oberer L, Winter J, Wrigglesworth R (1994) The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem 37:1942–1954

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Hu HZ, Colton CK, Wood JD, Zhu MX (2004) An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of TRPV1 channels. J Biol Chem 279:37423–37430

    Article  CAS  PubMed  Google Scholar 

  • Wang EC, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G (2005) ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 115:2412–2422

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Wang J, Wang C, Liu J, Shi LP, Xu M, Wang C (2008a) Functional expression of transient receptor potential vanilloid-related channels in chronically hypoxic human pulmonary arterial smooth muscle cells. J Membr Biol 223:151–159

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Wang P, Merriam FV, Bjorling DE (2008b) Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain 139:158–167

    Article  CAS  PubMed  Google Scholar 

  • Welch JM, Simon SA, Reinhart PH (2000a) The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc Natl Acad Sci USA 97:13889–13894

    Article  CAS  PubMed  Google Scholar 

  • Welch MJ, Purkiss JR, Foster KA (2000b) Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 38:245–258

    Article  CAS  PubMed  Google Scholar 

  • Wiart L, Joseph PA, Petit H, Dosque JP, de Sèze M, Brochet B, Deminière C, Ferrière JM, Mazaux JM, N’Guyen P, Barat M (1998) The effects of capsaicin on the neurogenic hyperreflexic detrusor. A double blind placebo controlled study in patients with spinal cord disease. Preliminary results. Spinal Cord 36:95–99

    Article  CAS  PubMed  Google Scholar 

  • Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15:658–664

    Article  CAS  PubMed  Google Scholar 

  • Wong GY, Gavva NR (2008) Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks. Brain Res Rev 60:267–277

    Article  PubMed  CAS  Google Scholar 

  • Wonnacots S, Marchbank M, Fiol C (1978) Ca2+ uptake by synaptosomes and its effect on the inhibition of acetylcholine release by botulinum toxin. J Neurochem 30:1127–1134

    Article  Google Scholar 

  • Yang X, Han JQ, Liu R (2008) Effects of experimental colitis on the expressions of calcitonin gene-related peptide and vanilloid receptor 1 in rat spinal cord sensory neurons. Acta Physiol Sinica 60:143–148

    CAS  PubMed  Google Scholar 

  • Yokoyama T, Kumon H, Nagai A (2008) Correlation of urinary nerve growth factor level with pathogenesis of overactive bladder. Neurourol Urodyn 27:417–420

    Article  PubMed  Google Scholar 

  • Yowler BC, Schengrund CL (2004) Glycosphingolipids: sweets for botulinum neurotoxin. Glycoconj J 21:287–293

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Oxford GS (2007) Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1. Mol Cell Neurosci 34:689–700

    Article  CAS  PubMed  Google Scholar 

  • Zhuang ZY, Xu H, Clapham DE, Ji RR (2004) Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 24:8300–8309

    Article  CAS  PubMed  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Högestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charrua, A., Avelino, A., Cruz, F. (2011). Modulation of Urinary Bladder Innervation: TRPV1 and Botulinum Toxin A. In: Andersson, KE., Michel, M. (eds) Urinary Tract. Handbook of Experimental Pharmacology, vol 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16499-6_17

Download citation

Publish with us

Policies and ethics