Skip to main content

Adaptive B-Spline Model Based Probabilistic Active Contour for Weld Defect Detection in Radiographic Imaging

  • Conference paper
Image Processing and Communications Challenges 2

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 84))

Summary

This paper describes a probabilistic region-based deformable model using a new adaptive scheme for B-spline representation. The idea is to adapt the number of spline control points which are necessary to describe an object with complex shape. For this purpose, the curve segment length (CSL) is used as criterion. The proposed split and merge strategy on the spline model consists in: adding a new control point when CSL is greater than a certain splitting threshold so that the contour tracks all the concavities and, removing a control point when CSL is less to a certain merging threshold so that the contour aspect maintains its smoothness. Noise on synthetic and real weld radiographic images is assumed following Gaussian or Rayleigh distribution. The experiments carried out confirm the adequacy of this approach, especially in tracking pronounced concavities contained in images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz, C.: Automatic evaluation of welded joints using image processing on radiographs. In: Conf. Proceed. of American Inst. of Physics, vol. 657, pp. 689–694 (2003)

    Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Computing and Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  3. Chesnaud, C., Réfrégier, P., Boulet, W.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. on PAMI 21(11), 1145–1157 (1999)

    Google Scholar 

  4. Cohen, L.D.: On active contour models and balloons. CVGIF: Image Understanding 53, 211–218 (1991)

    Article  MATH  Google Scholar 

  5. Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. on PAMI 15(11), 1131–1147 (1993)

    Google Scholar 

  6. Leroy, B., Herlin, I., Cohen, L.D.: Multi-resolution algorithms for active contour models. In: 12th Int. Conf. Analysis and Optimization of Systems, pp. 58–65 (1996)

    Google Scholar 

  7. Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Processing 7(3), 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Xu, C., Prince, J.: Generalized gradient vector flow: External forces for active contours. Signal Processing 71, 131–139 (1998)

    Article  MATH  Google Scholar 

  9. Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Trans PAMI 17, 158–175 (1995)

    Google Scholar 

  10. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Num. Math. 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goumeidane, A.B., Khamadja, M., Nacereddine, N., Mekhalfa, F.: Parametric active aontour for weld defect boundary extraction in radiographic testing. In: SPIE conf. on Quality Control by Artificial vision, Le Creusot, France (2007)

    Google Scholar 

  12. Cohen, L., Bardinet, E., Ayache, N.: Surface reconstruction using active contour models. In: SPIE conf. on Geometric Methods in Computer Vision, San Diego, CA (1993)

    Google Scholar 

  13. Ronfard, R.: Region-based strategies for active contour models. Int. Journal of Computer Vision 13(2), 229–251 (1994)

    Article  Google Scholar 

  14. Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing, and bayes/MDL for multiband image segmentation. IEEE Trans. on PAMI 18, 884–900 (1996)

    Google Scholar 

  15. Germain, O., Réfrégier, P.: Optimal snake-based segmentation of a random luminance target on a spatially disjoint background. Optics Letters 21(22), 1845–1848 (1996)

    Article  Google Scholar 

  16. Yezzi, A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: Int. Conf. on Image Processing, Kobe, pp. 898–903 (1999)

    Google Scholar 

  17. Dias, J.M.B.: Adaptive bayesian contour estimation: A vector space representation approach. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 157–172. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Figueiredo, M.A.T., Leitao, J.M.N., Jain, A.K.: Unsupervised contour representation and estimation using B-splines and a minimum description length criterion. IEEE Trans. on Image Processing 9(6), 1075–1087 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. on PAMI 22, 266–280 (2000)

    Google Scholar 

  20. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  21. Jehan-Besson, S., Barlaud, M., Aubert, G.: DREAM2S: Deformable regions driven by an Eulerian accurate minimization method for image and video segmentation. Int. Journal of Computer Vision 53(1), 45–70 (2003)

    Article  Google Scholar 

  22. Herbulot, A., Jehan-Besson, S., Duffner, S., Barlaud, M., Aubert, G.: Segmentation of vectorial image features using shape gradients and information measures. Journal of Mathematical Imaging and Vision 25(3), 365–386 (2006)

    Article  MathSciNet  Google Scholar 

  23. Nacereddine, N., Hamami, L., Ziou, D., Tridi, M.: Probabilistic deformable model for weld defect contour estimation in radiography. Machine Graphics & Vision 15(3/4), 547–556 (2006)

    Google Scholar 

  24. Dierchx, P.: Curve and surface fitting with splines. Oxford Univ. Press, Oxford (1993)

    Google Scholar 

  25. Precioso, F., Barlaud, M., Blu, T., Unser, M.: Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm. IEEE Trans. on Image Processing 14(7), 910–924 (2005)

    Article  Google Scholar 

  26. Tagare, H.: Deformable 2-D template matching using orthogonal curves. IEEE Trans. on Medical Imaging 16(1), 108–117 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nacereddine, N., Hamami, L., Ziou, D., Goumeidane, A.B. (2010). Adaptive B-Spline Model Based Probabilistic Active Contour for Weld Defect Detection in Radiographic Imaging. In: Choraś, R.S. (eds) Image Processing and Communications Challenges 2. Advances in Intelligent and Soft Computing, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16295-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16295-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16294-7

  • Online ISBN: 978-3-642-16295-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics