Skip to main content

Abstract

Genus Vaccinium consists of approximately 450 species, of which the most important are found in the sections Cyanococcus, Oxycoccus, Vitis-Idaea, Myrtillus, and Vaccinium. Three Vaccinium fruit crops (blueberry, cranberry, and lingonberry) have been domesticated in the twentieth century, while bilberry and several other non-cultivated Vaccinium species show great potential as new crops. Vaccinium fruits are considered a health-promoting food due to their nutritional and therapeutic properties highlighted by their relatively high levels of antioxidant phytonutrients and antiinflammatory capacity. Demand for berries from the various domesticated Vaccinium species will continue to grow in the near future. Currently, Vaccinium cultivars are generated exclusively through traditional breeding approaches. Controlled hybridization and deliberate selection has been used as the dominant technology for advanced breeding. Marker-assisted selection and genomic databases are beginning to emerge that will aid in the efficiency of Vaccinium breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alkharouf NW, Dhanaraj AL, Naik D, Overall C, Matthews BF, Rowland LJ (2007) Bbgd: an online database for blueberry genomic data. BMC Plant Biol 7:05

    Article  CAS  Google Scholar 

  • Aruna M, Ozias-Akins P, Austin ME, Kochert G (1993) Genetic relatedness among rabbiteye blueberry (Vaccinium ashei) cultivars determined by DNA amplification using single primers of arbitrary sequence. Genome 36:971–977

    Article  CAS  PubMed  Google Scholar 

  • Audrinja BA (1992) Lingonberry. In: Ripa AK, Kolomiiceva VF, Audrinja BA (eds) Cranberry, blueberry, lingonberry. Latvia, Zinatne, Riga, pp 151–202 (in Russian)

    Google Scholar 

  • Austin ME (1994) Rabbiteye blueberries: development, production and marketing. Agscience, Auburndale, FL, 160 p

    Google Scholar 

  • Ballington JR (1990) Germplasm resources available to meet future needs for blueberry cultivar improvement. Fruit Var J 44:54–62

    Google Scholar 

  • Ballington JR (2001) Collection, utilization and preservation of genetic resources in Vaccinium. HortScience 36:213–220

    Google Scholar 

  • Ballington JR (2009) The role of interspecific hybridization in blueberry improvement. Acta Hortic 810:49–60

    Google Scholar 

  • Ballington JR, Galletta GJ, Pharr DM (1976) Gibberellin effects on rabbiteye blueberry seed germination. HortScience 11:410–411

    CAS  Google Scholar 

  • Ballington JR, Luby JJ, Jahn OL (1988) Small fruit germplasm collections in the Pacific Northwest, 21 July to 13 Aug 1985, North Carolina State University, Horticulture Crops Research Series No 78, NC, USA

    Google Scholar 

  • Barney DL (2003) Prospects for domesticating western huckleberries. Small Fruits Rev 2:15–29

    Article  Google Scholar 

  • Bassil N, Oda A, Hummer KE (2009) Blueberry microsatellite markers identify cranberry cultivars. Acta Hortic 810:181–187

    CAS  Google Scholar 

  • Bell D, Rowland LJ, Polashock J, Drummond F (2008) Suitability of EST-PCR markers developed in highbush blueberry (Vaccinium corymbosum L.) for genetic fingerprinting and relationship studies in lowbush blueberry (V. angustifolium Ait.). J Am Soc Hortic Sci 133:701–707

    Google Scholar 

  • Boches P, Rowland LJ, Bassil NV (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660

    Article  CAS  Google Scholar 

  • Boches P, Rowland LJ, Hummer KE, Bassil NV (2006) Microsatellite markers evaluate genetic diversity in blueberry and generate unique fingerprints. In: Plants and animal genome XIV conference, San Diego, CA, USA, p 133

    Google Scholar 

  • Bone K, Morgan M (1997) Bilberry: the vision herb. MediHerb Profess Rev 59:14

    Google Scholar 

  • Brevis PA, Bassil NV, Ballington JR, Hancock JF (2008) Impact of wide hybridization on highbush blueberry breeding. J Am Soc Hortic Sci 133:427–437

    Google Scholar 

  • Brooks SJ, Lyrene PM (1998a) Derivatives of Vaccinium arboreum × Vaccinium section Cyanococcus: I. Morphological characteristics. J Am Soc Hortic Sci 123:273–277

    Google Scholar 

  • Brooks SJ, Lyrene PM (1998b) Derivatives of Vaccinium arboreum × Vaccinium section Cyanococcus: II.Fertility and fertility parameters. J Am Soc Hortic Sci 123:997–1003

    Google Scholar 

  • Bruederle LP, Vorsa N, Ballington JR (1991) Population genetic structure in diploid blueberry Vaccinium section Cyanococcus (Ericaceae). Am J Bot 78:230–237

    Article  Google Scholar 

  • Bruederle LP, Hugan MS, Dignan JM, Vorsa N (1996) Genetic variation in natural populations of the large cranberry, Vaccinium macrocarpon Ait. (Ericaceae). B Torr Bot Club 123:41–47

    Article  Google Scholar 

  • Bruneton J (1995) Pharmacognosy, phytochemistry, medicinal plants. Lavoisier, Paris, France

    Google Scholar 

  • Camp WH (1942a) A survey of the American species of Vaccinium, subgenus Euvaccinium. Brittonia 4:205–247

    Article  Google Scholar 

  • Camp WH (1942b) On the structure of populations in the genus Vaccinium. Brittonia 4:189–204

    Article  Google Scholar 

  • Camp WH (1944) A preliminary consideration of the biosystematy of Oxycoccus. Bull Torr Bot Club 71:426–437

    Article  Google Scholar 

  • Camp WH (1945) The North American blueberries with notes on other groups of Vaccinium. Brittonia 5:203–275

    Article  Google Scholar 

  • Chandler FB, Wilcox RB, Bergman HF, Dermen H (1947) Cranberry breeding investigation of the USDA cranberries. Natl Cranberry Mag 12:6–9

    Google Scholar 

  • Chandler CK, Draper AD, Galletta GJ (1985a) Crossability of a diverse group of polyploidy interspecific hybrids. J Am Soc Hortic Sci 110:878–881

    Google Scholar 

  • Chandler CK, Draper AD, Galletta GJ (1985b) Combining ability of blueberry interspecific hybrids for growth on upland soil. HortScience 20:257–258

    Google Scholar 

  • Cockerman LE, Galletta GJ (1976) A surevy of pollen characteristic in certain Vaccinium species. J Am Soc Hortic Sci 101:671–676

    Google Scholar 

  • Conner AM, Luby JJ, Tong CBS, Finn CE, Hancock JF (2002a) Genotypic and environmental variation in antioxidant activity, total phenolics and anthocyanin content among blueberry cultivars. J Am Soc Hortic Sci 127:89–97

    Google Scholar 

  • Conner AM, Luby JJ, Tong CBS (2002b) Variability in antioxidant activity in blueberry and correlations among different antioxidant assays. J Am Soc Hortic Sci 127:238–244

    Google Scholar 

  • Czesnik E (1985) Investigation of F1 generation of interspecific hybrids Vaccinium corymbosum L. × V. uliginosum L. Acta Hortic 165:85–91

    Google Scholar 

  • Dana MN (1983) Cranberry cultivar list (Vaccinium macrocarpon). Fruit Var J 37:88–95

    Google Scholar 

  • Darnell RL, Williamson JG (1997) Feasibility of blueberry production in warm climates. Acta Hortic 446:251–256

    Google Scholar 

  • Darrow GM (1960) Blueberry breeding, past, present, future. Am Hortic Mag 39:14–33

    Google Scholar 

  • Darrow GM, Camp WH (1945) Vaccinium hybrids and the development of new horticultural material. Bull Torr Bot Club 72:1–21

    Article  Google Scholar 

  • Darrow GM, Scott DH, Derman H (1954) Tetraploid blueberries from hexaploid × diploid species crosses. Proc Am Soc Hortic Sci 63:266–270

    Google Scholar 

  • Dhanaraj AL, Slovin JP, Rowland LJ (2004) Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci 166:863–872

    Article  CAS  Google Scholar 

  • Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225:735–751

    Article  CAS  PubMed  Google Scholar 

  • Dierking WS, Beerenobst W (1993) European Vaccinium species. Acta Hort 346:299–304

    Google Scholar 

  • Dilabio RNW, Rencz AN (1980) Relationship between levels of copper, uranium and lead in glacial sediments in Vaccinium uliginosum at an arctic site enriched with heavy metals. Can J Bot 58:2017–2021

    CAS  Google Scholar 

  • Draper AD (1977) Tetraploid hybrids from crosses of diploid, tetraploid and hexaploid Vaccinium species. Acta Hortic 61:33–36

    Google Scholar 

  • Draper AD (1995) In search of the perfect blueberry variety. J Small Fruit Vitic 3:17–20

    Article  Google Scholar 

  • Draper AD, Hancock JF (2003) Florida 4B: native blueberry with exceptional breeding value. J Am Pomol Soc 57:138–141

    Google Scholar 

  • Draper AD, Scott DH (1971) Inheritance of albino seedlings in tetraploid highbush blueberry. J Am Soc Hortic Sci 96:791–792

    Google Scholar 

  • Duthie SJ, Jenkinson AM, Crozier A, Mullen W, Pirie L, Kyle J, Yap LS, Christen P, Duthie GG (2006) The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur J Nutr 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Eckerbom C (1988) Lingonberry in cultivation. Swedish Univ Agri Sci Div Fruit Breeding BalsgÃ¥rd Rep 1988–1989:72–75

    Google Scholar 

  • Ehlenfeldt MK, Prior RL (2001) Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem 49:2222–2227

    Article  CAS  PubMed  Google Scholar 

  • El-Agamy SZA, Sherman WB, Lyrene PM (1981) Fruit set and seed number from self- and crosspollinated highbush (4x) and rabbiteye (6x) blueberries. J Am Soc Hortic Sci 106:443–445

    Google Scholar 

  • Encyclopedia of Plants (2008) Vaccinium – Bearberry, Bilberry, Blueberry, Burren Myrtle, Cowberry, Cranberry, Craneberry, Crowberry, Dyeberry, Farkleberry, Huckleberry, Hurtleberry, Lingberry, Lingonberry, Partridgeberry, Sparkleberry, Whinberry, Whortleberry, Wineberry. http://www.botany.com/vaccinium.html. Accessed 01 Aug 2010

  • Estabrooks EN (1998) The cultivation of lingonberry (Vaccinium vitis-idaea var. minus) in Eastern Canada. In: Proceedings of conference on wild berry culture: an exchange of western and eastern experiences. Tartu, Estonia, 10–13 Aug 1998, Metsanduslikud uurimused 30:211

    Google Scholar 

  • Fang RZ, Stevens PF (2005) Gaultheria. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 14, Apiaceae through Ericaceae. Science, MO Botanical Garden, Beijing, St. Louis, MO, pp 464–475

    Google Scholar 

  • Ferguson PJ, Kurowska EM, Freeman DJ, Chambers AF, Koropatnick J (2006) In vivo inhibition of growth of human tumor lines by flavonoid fractions from cranberry extract. Nutr Cancer 56:86–94

    Article  CAS  PubMed  Google Scholar 

  • Fernqvist I (1977) Results of experiments with cowberries and blueberries in Sweden. Acta Hortic 61:295–300

    Google Scholar 

  • Finn C (1999) Temperate berry crops. In: Janick J (ed) Perspectives on new crops and new uses. ASHS, Alexandria, VA, pp 324–334

    Google Scholar 

  • Finn CE, Mackey TA (2006) Growth, yield, and fruit quality of 10 lingonberry (Vaccinium vitis-idaea) cultivars and selections in the United States Pacific Northwest. Acta Hortic 715:289–294

    Google Scholar 

  • Finn CE, Luby JJ, Wildung DK (1990) Half-high blueberry cultivars. Fruit Var J 44:63–68

    Google Scholar 

  • Flower-Ellis JG (1971) Age structure and dynamics in stands of bilberry (Vaccinium myrtillus L.). PhD Thesis, Royal College of Forestry, Stockholm, Department of Forest Ecology and Forest Soils, Research Notes 9:1–108

    Google Scholar 

  • Galletta GJ, Ballington JR (1996) Blueberries, cranberries and lingonberries. In: Janick J, Moore JN (eds) Fruit breeding, vol II, Vine and small fruit crops. Wiley, New York, NY, pp 1–107

    Google Scholar 

  • Grieve M (1979) A modern herbal. Dover, New York, NY

    Google Scholar 

  • Gupton CL, Spiers JM (1994) Interspecific and intraspecific pollination effects in rabbiteye and southern highbush blueberry. HortScience 29:324–326

    Google Scholar 

  • Gustavsson BA (1993) Lingonberry breeding and cultivation. Acta Hortic 346:311–313

    Google Scholar 

  • Gustavsson BA (1997) Breeding strategies in lingonberry culture (Vaccinium vitis-idaea). Acta Hortic 446:129–137

    Google Scholar 

  • Gustavsson BA (1999) Plant breeding and domestication of lingonberry (Vaccinium vitis-idaea L.). Doctoral Thesis. Swedish University of Agricultural Sciences, Alnarp, Sewden

    Google Scholar 

  • Gustavsson BA (2001) Genetic variation in horticulturally important traits of fifteen wild lingonberry Vaccinium vitis-idaea L. populations. Euphytica 120:173–182

    Article  Google Scholar 

  • Gustavsson BA, Trajkovski V (1999) ‘Ida’ and ‘Linnea’ – novel lingonberry cultivars with commercial potential. Fruit Var J 53:228–230

    Google Scholar 

  • Gustavsson LG, Persson HA, Nybom H, Rumpunen K, Gustavsson BA, Bartish IV (2005) RAPD-based analysis of genetic diversity and selection of lingonberry (Vaccinium vitis-idaea L.) material for ex situ conservation. Genet Resour Crop Evol 52:723–735

    Article  CAS  Google Scholar 

  • Haghighi K, Hancock JF (1992) DNA restriction fragment length variability in genomes of highbush blueberry. HortScience 27:44–47

    CAS  Google Scholar 

  • Hancock JF (1998) Using southern blueberry species in northern highbush breeding. In: Line WO, Ballington JR (eds) Proceedings of 8th North American blueberry research and extension workers conference, North Carolina State University, Raleigh, NC, USA, pp 91–94

    Google Scholar 

  • Hancock JF (2006a) Northern highbush breeding. Acta Hortic 715:37–40

    Google Scholar 

  • Hancock JF (2006b) Highbush blueberry breeders. HortScience 41:20–21

    Google Scholar 

  • Hancock JF, Draper AD (1989) Blueberry culture in North America. HortScience 24:551–556

    Google Scholar 

  • Hancock JF, Galletta GJ (1995) Dedication: Arlen D. Draper: Blueberry Wizard. Plant Breed Rev 13:1–10

    Google Scholar 

  • Hancock JF, Luby JJ, Beaudry R (2003) Fruits of the Ericaceae. In: Trugo L, Fingas P, Caballero B (eds) Encyclopedia of food science, food technology and nutrition. Academic, London, UK, pp 2762–2768

    Chapter  Google Scholar 

  • Hancock JF, Lyrene P, Finn CE, Vorsa N, Lobos GA (2008) Blueberries and cranberries. In: Hancock JF (ed) Temperate fruit crop breeding. Springer, New York, NY, pp 115–149

    Chapter  Google Scholar 

  • Hanson HC (1953) Vegetation types in northwestern Alaska and comparisons with communities in other arctic regions. Ecology 34:111–140

    Article  Google Scholar 

  • Harrison RE, Luby JJ, Ascher PD (1993) Genetic characteristics of self-fertility in highbush and half-high blueberries. Euphytica 67:79–88

    Article  Google Scholar 

  • Hendrickson PA (1997) The wild lingonberry (Vaccinium vitis-idaea L. var. minus Lodd) industry in North America. Acta Hortic 446:47–48

    Google Scholar 

  • Hiirsalmi H (1977) Inheritance of characters in hybrids of Vaccinium uliginosum and highbush blueberries. Ann Agric Fenn 16:7–18

    Google Scholar 

  • Hinrichsen P, Herminia Castro M, Ravest G, Rojas G, Méndez M, Bassil NV, Muñoz C (2009) Minimal microsatellite marker panel for fingerprinting blueberry cultivars. Acta Hortic 810:173–180

    CAS  Google Scholar 

  • Hokanson K, Hancock J (1998) Levels of allozymic diversity in diploid and tetraploid Vaccinium section Cyanococcus (blueberries). Can J Plant Sci 78:327–332

    CAS  Google Scholar 

  • Holloway P, Alexander G (1990) Ethnobotany of the Fort Yukon Region, Alaska. Econ Bot 44:214–225

    Article  Google Scholar 

  • Hultén E (1949) On the races in the Scandinavian flora. Svensk Botanisk Tidskrift 43:383–406

    Google Scholar 

  • Huxley A (ed) (1992a) The new royal horticultural society dictionary of gardening, vol 1. Stockton, New York, NY, 815 p

    Google Scholar 

  • Huxley A (ed) (1992b) The new royal horticultural society dictionary of gardening, vol 4. Stockton, New York, USA, 888 p

    Google Scholar 

  • Iwagaki H, Ishikawa S, Tamada T, Koike H (1977) The present status of blueberry work and wild Vaccinium spp. in Japan. Acta Hortic 61:331–334

    Google Scholar 

  • Jaakola L, Suokas M, Häggman H, Hohtola A, Riihinen K, Seymour GB (2009) Molecular aspects of bilberry (V. myrtillus) fruit ripening. Acta Hortic 810:895–900

    CAS  Google Scholar 

  • Jacquemart A (1997) Vaccinium oxycoccos L. (Oxycoccus palustris Pers.) and Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh. (Oxycoccus microcarpus Turcz. ex Rupr.). J Ecol 85:381–396

    Article  Google Scholar 

  • Jelenkovic G (1973) Breeding value of pentaploid interspecific hybrids of Vaccinium. Jugoslovensko Vocarstvo 7:237–244

    Google Scholar 

  • Jepson RG, Craig JC (2007) A systematic review of the evidence for cranberries and blueberries in UTI prevention. Mol Nutr Food Res 51:738–745

    Article  CAS  PubMed  Google Scholar 

  • Kardell L (1980) Occurrence and production of bilberry, lingonberry and raspberry in Sweden’s forests. For Ecol Manag 2:285–298

    Article  Google Scholar 

  • Kelso S (1989) Vascular flora and phytogeography of Cape Prince of Wales, Seward Peninsula Alaska. Can J Bot 67:3248–3259

    Google Scholar 

  • Kessler T, Jansen B, Hesse A (2002) Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation. Eur J Clin Nutr 56:1020–1023

    Article  CAS  PubMed  Google Scholar 

  • Kostov PP, Stojanov DT (1985) Rational utilization of bilberry finding places in Bulgaria and their cultivation. Acta Hortic 165:281–285

    Google Scholar 

  • Krebs SL, Hancock JF (1988) The consequences of inbreeding on fertility in Vaccinium corymbosum L. J Am Soc Hortic Sci 113:914–918

    Google Scholar 

  • Krebs SL, Hancock JF (1989) Tetrasomic inheritance of isoenzyme markers in the highbush blueberry, Vaccinium corymbosum. Heredity 63:11–18

    Article  Google Scholar 

  • Krebs SL, Hancock JF (1990) Early-acting inbreeding depression and reproductive success in highbush blueberry, Vaccinium corymbosum L. Theor Appl Genet 79:825–832

    Article  Google Scholar 

  • Kreher SA, Fore SA, Collins B (2000) Genetic variation within and among patches of theclonal species, Vaccinium stamineum L. Mol Ecol 9:1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Kron KA, Powell EA, Luteyn JL (2002) Phylogenetic relationships within the blueberry tribe (Vaccinieae, Ericaceae) based on sequence data from MATK and nuclear ribosomal ITS regions, with comments on the placement of Satyria. Am J Bot 89:327–336

    Article  CAS  Google Scholar 

  • Lehmushovi A (1977) Trials with the cowberry in Finland. Acta Hortic 61:301–308

    Google Scholar 

  • Lehnert D (2008) Blueberry production is skyrocketing worldwide. The Fruit growers news. http://www.fruitgrowersnews.com/pages/arts.php?ns5908. Accessed 01 Aug 2010

  • LeResche RE, Davis JL (1973) Importance of nonbrowse foods to moose on the Kenai Peninsula, Alaska. J Wild Life Manag 37:279–287

    Article  Google Scholar 

  • Levi A, Rowland LJ, Hartung JS (1993) Production of reliable randomly amplified polymorphic DNA (RAPD) markers from DNA of woody plants. HortScience 28:1188–1190

    CAS  Google Scholar 

  • Li Y, Yu H (2009) The current status and future of the blueberry industry in China. Acta Hortic 810:445–456

    Google Scholar 

  • Liebster G (1977) Experimental and research work on fruit species of the genus Vaccinium in Germany. Acta Hortic 61:19–24

    Google Scholar 

  • Linsenmeyer TA, Harrison B, Oakley A, Kirshblum S, Stock JA, Millis SR (2004) Evaluation of cranberry supplement for reduction of urinary tract infections in individuals with neurogenic bladders secondary to spinal cord injury. A prospective, double-blinded, placebo-controlled, crossover study. J Spinal Cord Med 27:29–34

    PubMed  Google Scholar 

  • Luby JJ, Ballington JR, Draper AD, Pliska K, Austin ME (1991) Blueberries and cranberries (Vaccinium). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops. International Society for Horticultural Science, Wageningen, Netherlands, pp 391–456

    Google Scholar 

  • Lyrene PM (1981) Recurrent selection in breeding rabbiteye blueberries (Vaccinium ashei Reade). Euphytica 30:505–511

    Article  Google Scholar 

  • Lyrene PM (1987) Breeding rabbiteye blueberries. Plant Breed Rev 5:307–357

    Google Scholar 

  • Lyrene PM (1998) Ralph Sharpe and the Florida blueberry breeding program. In: Cline WO, Ballington JR (eds) Proceedings of the 8th North American blueberry research and extension workers conference. North Carolina State University, Raleigh, NC, USA, pp 1–7

    Google Scholar 

  • Lyrene PM (2005) Breeding low-chill blueberries and peaches for subtropical areas. HortScience 40:1947–1949

    Google Scholar 

  • Lyrene PM (2006) Breeding southern highbush and rabbiteye blueberries. Acta Hortic 715:29–37

    Google Scholar 

  • Lyrene PM, Ballington JR (1986) Wide hybridization in Vaccinium. HortScience 21:52–57

    Google Scholar 

  • Lyrene PM, Sherman WB (1983) Mitotic instability and 2n gamete production in Vaccinium corymbosum × V. elliottii hybrids. J Am Soc Hortic Sci 108:339–342

    Google Scholar 

  • Lyrene PM, Vorsa N, Ballingto NR (2003) Polyploidy and sexual polyploidization in the genus Vaccinium. Euphytica 133:27–36

    Article  Google Scholar 

  • Maas JL, Galletta GJ, Stoner GD (1991) Ellagic acid, an anticarcinogen in fruits, especially in strawberries: a review. HortScience 26:10–14

    Google Scholar 

  • Macbride JF (1959) Flora of Peru. Field museum of natural history. Botany 13:726–741

    Google Scholar 

  • MacHutchon GA (1989) Spring and summer food habits of black bears in the Pelly River Valley, Yukon. NW Sci 63:116–118

    Google Scholar 

  • Mainland CM (1998) Frederick Coville’s pioneering contributions to blueberry culture and breeding. In: Proceedings of North American blueberry workers conference, Wilmington DC, USA

    Google Scholar 

  • Martinussen I, Nestby R, Nes A (2009) Potential of the European wild blueberry (Vaccinium myrtillus) for cultivation and industrial exploitation in Norway. Acta Hortic 810:211–216

    Google Scholar 

  • McCown BH, Zeldin EL (2003) ‘HyRed’, an early, high fruit color cranberry hybrid. HortScience 38:304–305

    Google Scholar 

  • McCown BH, Zeldin EL (2005) Vaccinium Spp, cranberry. In: Litz RE (ed) Biotechnology of fruit and nut crops. Biotechnology in agriculture, Series no 29. CABI, Wallingford, Oxon, UK, pp 247–261

    Google Scholar 

  • Moerman DE (1998) Native American ethnobotany. Timber, Portland, OR, 927 p

    Google Scholar 

  • Morazzoni P, Bombardelli E (1996) Vaccinium myrtillus L. Fitoterapia 67:329

    Google Scholar 

  • Morrow EB (1943) Some effects of cross pollination versus self pollination in the cultivated blueberry. Proc Am Soc Hortic Sci 42:469–472

    Google Scholar 

  • Munoz CE, Lyrene PM (1985) In vitro attempts to overcome the cross-incompatibility between V. corymbosum L. and V. elliottii Chapm. Theor Appl Genet 69:591–596

    Article  Google Scholar 

  • National Plant Germplasm System (2005) Small Fruit Crop Germplasm Committee Vulnerability Statement – (April 2000). http://www.ars-grin.gov/npgs/cgc_reports/smallfrt.htm#vac. Accessed 01 Aug 2010

  • Neto CC (2007a) Cranberry and its phytochemicals: a review of in vitro anticancer studies. J Nutr 137:186S–193S

    CAS  PubMed  Google Scholar 

  • Neto CC (2007b) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51:652–664

    Article  CAS  PubMed  Google Scholar 

  • Neto CC, Amoroso JW, Liberty AM (2008) Anticancer activities of cranberry phytochemicals: an update. Mol Nutr Food Res 52(Suppl):S18–S27

    PubMed  Google Scholar 

  • Novy RG, Kokak C, Goffreda J, Vorsa N (1994) RAPDs identify varietal misclassification and regional divergence in cranberry [Vaccinium macrocarpon (Ait) Pursh]. Theor Appl Genet 88:1004–1010

    Article  CAS  Google Scholar 

  • Ortiz R, Vorsa N, Bruederle LP, Laverty T (1992) Occurrence of unreduced pollen in diploid blueberry species, Vaccinium sect. Cyanococcus. Theor Appl Genet 85:55–60

    Article  Google Scholar 

  • Paal T (2006) Lingonberry (Vaccinium vitis–idaea L.) research in Estonia: an overview. Acta Hortic 715:203–217

    Google Scholar 

  • Penhallegon R (2003) Lingonberry: a great new crop for the Pacific Northwest (LC 706). Oregon State University Extension Service, Lane County Office, Eugene, OR

    Google Scholar 

  • Perry JL, Lyrene PM (1984) In vitro induction of tetraploidy in Vaccinium darrowii, V. elliottii, and V. darrowii × V. elliottii with colchicine treatment. J Am Soc Hortic Sci 109:4–6

    Google Scholar 

  • Persson HA, Gustavsson BA (2001) The extent of clonality and genetic diversity in lingonberry (Vaccinium vitis-idaea L.) revealed by RAPDs and leaf-shape analysis. Mol Ecol 10:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Pliszka K, Kawecki L (1985) ‘Masovia’ – a new Polish selection of lingonberries. Acta Hortic 165:273

    Google Scholar 

  • Pliszka K, Kawecki L (2000) A new selection of lingonberries (Vaccinium vitis-idaea L.) in Poland. In: Proceedings of conference on problems of rational utilization and reproduction of berry plants in boreal forests on the eve of the 21st century, Gomel-Glubokoye, Belorus, pp 197–199

    Google Scholar 

  • Polashock J, Vorsa N (2002a) Cranberry transformation and regeneration. In: Khachatourians GG, McHughen A, Scorza R, Nip WK, Hui YH (eds) Transgenic plants and crops. Marcel Dekker, New York, NY, pp 383–396

    Google Scholar 

  • Polashock J, Vorsa N (2002b) Breeding and biotechnology: a combined approach to cranberry improvement. Acta Hortic 574:171–174

    CAS  Google Scholar 

  • Polashock J, Vorsa N (2006) Segregating blueberry populations for mummy berry fruit rot resistance. In: New Jersey annual vegetation meeting proceedings, Atlantic City, NJ, USA

    Google Scholar 

  • Popenoe W (1924) Economic fruit-bearing plants of Ecuador. Contrib US Nat Herb, vol 24, Pt 5. Smithsonian Institute, Washington DC, USA, pp 101–134

    Google Scholar 

  • Powell EA, Kron KA (2002) Hawaiian blueberries and their relatives-A phylogenetic analysis of Vaccinium sections Macropelma, Myrtillus, and Hemimyrtillus (Ericaceae). Syst Bot 27:768–779

    Google Scholar 

  • Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainand CM (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem 46:2686–2693

    Article  CAS  Google Scholar 

  • Qu L, Hancock JF (1995) Nature of 2n gamete formation and mode of inheritance in interspecific hybrids of diploid Vaccinium darrowi and tetraploid V. corymbosum. Theor Appl Genet 91:1309–1315

    Article  CAS  Google Scholar 

  • Qu LP, Hancock JF (1997) Randomly amplified polymorphic DNA-(RAPD-) based genetic linkage map of blueberry derived from an interspecific cross between diploid Vaccinium darrowi and tetraploid V. corymbosum. J Am Soc Hortic Sci 122:69–73

    CAS  Google Scholar 

  • Qu L, Vorsa N (1999) Desynapsis and spindle abnormalities leading to 2n pollen formation in Vaccinium darrowii. Genome 42:35–40

    Article  Google Scholar 

  • Qu L, Hancock JF, Whallon JH (1998) Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowi and autotetraploid V. corymbosum (Ericaceae). Am J Bot 85:698–703

    Article  Google Scholar 

  • Raatikainen M, Raatikainen T (1983) Mustikan sato, poiminta ja markkinointi Pihtiputaalla. Silva Fenn 17:113–123

    Google Scholar 

  • Rabaey A, Luby J (1988) Fruit set in half-high blueberry genotypes following self and cross pollination. Fruit Var J 42:126–129

    Google Scholar 

  • Ritchie JC (1956) Biological flora of the British Isles Vaccinium myrtillus L. J Ecol 44:291–299

    Article  Google Scholar 

  • Robuck OW (1989) Common Alpine plants of Southeast Alaska. Misc. Publ. Juneau, AK, US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 207 p

    Google Scholar 

  • Roper TR, Vorsa N (1997) Cranberry: botany and horticulture. Hortic Rev 21:215–249

    Google Scholar 

  • Rousi A (1963) Hybridization between Vaccinium uliginosum and cultivated blueberry. Ann Agric Fenn 2:12–18

    Google Scholar 

  • Rousi A (1967) Cytological observation on some species and hybrids in Vaer. Zuechter 36:352–359

    Google Scholar 

  • Rowland LJ, Hammerschlag FA (2005) Vaccinium spp. blueberry. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Cambridge, MA, pp 222–246

    Chapter  Google Scholar 

  • Rowland LJ, Levi A (1994) RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowi and V. elliottii). Theor Appl Genet 87:863–868

    Article  CAS  Google Scholar 

  • Rowland LJ, Ogden EL, Arora R, Lim CC, Lehman JS, Levi A, Panta GR (1999) Use of blueberry to study genetic control of chilling requirement and cold hardiness in woody perennials. HortScience 34:1185–1191

    Google Scholar 

  • Rowland L, SmritiM DA, Ehlenfeldt M, Ogden E, Slovin J (2003a) Development of ESTPCR markers for DNA fingerprinting and mapping in blueberry (Vaccinium, section Cyanococcus). J Am Soc Hortic Sci 128:682–690

    CAS  Google Scholar 

  • Rowland LJ, Dhanaraj AL, Polashock JJ, Arora R (2003b) Utility of blueberry-derived EST-PCR primers in related Ericaceae species. HortScience 38:1428–1432

    CAS  Google Scholar 

  • Rowland LJ, Mehra S, Arora R (2003c) Identification of molecular markers associated with cold tolerance in blueberry. Acta Hortic 625:59–69

    CAS  Google Scholar 

  • Rui H (1982) Germplasm resources of the wild fruits in the Chang-Bai-Shan mountain region (In Chinese). Acta Hortic Sin 9:9–18

    Google Scholar 

  • Sarracino J, Vorsa N (1991) Self- and cross-fertility in cranberry. Euphytica 58:129–136

    Article  Google Scholar 

  • Schultz JH (1944) Some cytotaxonomic and germination studies in the genus Vaccinium. PhD Dissertation, Washington State University, Pullman, WA, USA

    Google Scholar 

  • Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54:9329–9339

    Article  CAS  PubMed  Google Scholar 

  • Sharp RH, Darrow GM (1959) Breeding blueberries for the Florida climate. Proc FL State Hortic Soc 72:308–311

    Google Scholar 

  • Sleumer H (1941) Vaccinioidee-Studien. Botanische Jahrbücher 71:375–510

    Google Scholar 

  • Sorsa V (1962) Chromosomenzahlen finnischer Kormophyten. I Ann Acad Scient Fenn 58:1–14

    Google Scholar 

  • Stang EJ, Anderson SP, Klueh J (1993) Lingonberry cultural management research in Wisconsin, USA. Acta Hortic 346:327–333

    Google Scholar 

  • Stang EJ, Klueh J, Weis GG (1994) ‘Splendor’ and ‘Regal’ lingonberry – new cultivars for a developing industry. Fruit Var J 48:182–184

    Google Scholar 

  • Stevens PF (1972) Notes on the infrageneric classification of Agapetes with four new taxa from New Guinea. Notes R Bot Gard Edinb 32:13–28

    Google Scholar 

  • Strik B (2005) Blueberry – an expanding world berry crop. Chron Hortic 45:7–12

    Google Scholar 

  • Strik B, Yarborough D (2005) Blueberry production trends in North America, 1992 to 2003 and predictions for growth. HortTechnology 15:391–398

    Google Scholar 

  • Suda J (2003) Sympatric occurrences of various cytotypes of Vaccinium sect. Oxycoccus (Ericaceae). Nord J Bot 22:593–601

    Article  Google Scholar 

  • Sun J, Liu RH (2006) Cranberry phytochemical extracts induce cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. Cancer Lett 241:124–134

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Chu YF, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50:7449–7454

    Article  CAS  PubMed  Google Scholar 

  • Szczawinski AF (1962) The heather family (Ericaceae) of British Columbia. British Columbia Provincial Museum Handbook Number 19, Victoria BC, Canada

    Google Scholar 

  • Teär J (1972) Vegetativ och fruktivikativ utveckling hos vildväxande och odlade lingon. PhD Dissertation, Alfa-Lavals Offsettryckeri, Tumba, Sweden (in Swedish)

    Google Scholar 

  • Trajkovski V, Sjöstedt B (1986) Breeding of lingonberries and lowbush blueberries. Swedish Univ Agric Sci Div Fruit Breed BalsgÃ¥rd Rep 1984–1985:49–51

    Google Scholar 

  • Turner N (1997) Food plants of interior first peoples. UBC, Vancouver, BC, 215 p

    Google Scholar 

  • Tyak GV, Cherkasov AF, Altukhova SA (2000) The first Russian cultivars of lingonberry. In: Proceedings of problems of rational utilization and reproduction of berry plants in boreal forests on the eve of the 21st century. Gomel–Glubokoye, Belorus, pp 246–248

    Google Scholar 

  • Tyler VE (1994) Herbs of choice: the therapeutic use of phytomedicinals. Pharmaceutical Products Press, New York, NY

    Google Scholar 

  • USDA-ARS (2007) Oxygen radical absorbance capacity of selected foods – 2007. http://www.ars.usda.gov/SP2UserFiles/Place/12354500/Data/ORAC/ORAC07.pdf. Accessed 01 Aug 2010

  • Vander Kloet SP (1977) The taxonomic status of Vaccinium boreale. Can J Bot 55:281–288

    Article  Google Scholar 

  • Vander Kloet SP (1980) The taxonomy of highbush blueberry, Vaccinium corymbosum. Can J Bot 58:1187–1201

    Article  Google Scholar 

  • Vander Kloet SP (1983) The taxonomy of Vaccinium section Cyanococcus: a summation. Can J Bot 61:256–266

    Article  Google Scholar 

  • Vander Kloet SP (1988) The genus Vaccinium in North America. Pub 1828. Res Branch, Agri Canada, Canadian Government Publication Centre, Ottawa, ON, Canada

    Google Scholar 

  • Vander Kloet SP, Dickinson A (1999) The taxonomy of Vaccinium section Myrtillus (Ericaceae). Brittonia 51:231–254

    Article  Google Scholar 

  • Vorsa N (1997) On a wing: the genetics and taxonomy of Vaccinium species from a pollination perspective. Acta Hortic 446:59–66

    Google Scholar 

  • Vorsa N, Ballington JR (1991) Fertility of triploid highbush blueberry. J Am Soc Hortic Sci 116:336–341

    Google Scholar 

  • Vorsa N, Rowland LJ (1997) Estimation of 2n megagametophyte heterozygosity in a diploid blueberry (Vaccinium darrowi Camp) clone using RAPDs. J Hered 88:423–426

    CAS  Google Scholar 

  • Vorsa N, Jelenkovic G, Draper AD, Welker WV (1987) Fertility of 4x × 5x and 5x × 4x progenies derived from Vaccinium ashei/corymbosum pentaploid hybrids. J Am Soc Hortic Sci 112:993–997

    Google Scholar 

  • Vorsa N, Johnson-Cicalese J, Polashock J (2009) A blueberry by cranberry hybrid derived from a Vaccinium darrowii × (V. macrocarpon × V. oxycoccos) intersectional cross. Acta Hortic 810:187–190

    CAS  Google Scholar 

  • Wang SY, Feng R, Bowman L, Penhallegon R, Ding M (2005) Antioxidant activity in lingonberries (vaccinium vitis-idaea l) inhibits activator protein 1, nuclear factor-kappab, and mitogen-activated protein kinases. J Agric Food Chem 53:3156–3166

    Article  CAS  PubMed  Google Scholar 

  • Wenslaff TF, Lyrene PM (2003) Chromosome homology in tetraploid southern highbush × Vaccinium elliottii hybrids. HortScience 38:263–265

    Google Scholar 

  • West SD (1982) Dynamics of colonization and abundance in a central Alaskan population of the northern red-backed vole, Clethrionomys rutilis. J Mammal 63:128–143

    Article  Google Scholar 

  • Wilbur RL, Luteyn (1978) Flora of Panama. Part 8. Family 149. Ericaceae. Ann MO Bot Gard 65:27–144

    Google Scholar 

  • Wolff JO (1978) Food habits of snowshoe hare in interior Alaska. J Wild Life Manag 42:148–153

    Article  Google Scholar 

  • Young SB (1970) On the taxonomy and distribution of Vaccinium uliginosum. Rhodora 72:439–459

    Google Scholar 

  • Zeldin EL, McCown BH (2002) Towards the development of a highly fertile polyploid cranberry. Acta Hortic 574:175–180

    Google Scholar 

  • Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51:502–509

    Article  CAS  PubMed  Google Scholar 

  • Zillmer A (1985) Account of my three types of Vaccinium vitis-idaea: ‘Erntedank’– ‘Erntekrone’–‘Erntesegen’. Acta Hortic 165:295–297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Hancock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, GQ., Hancock, J.F. (2011). Vaccinium. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16057-8_10

Download citation

Publish with us

Policies and ethics