Skip to main content

Random Pruning of Blockwise Stationary Mixtures for Online BSS

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

  • 3111 Accesses

Abstract

We explore information redundancy of linearly mixed sources in order to accomplish the demixing task (BSS) by ICA techniques in real-time. Assuming piecewise stationarity of the sources, the idea is to prune uniformly and independently most of sample data while preserving the ability of Kurtosis-based algorithms to reconstruct the original sources using pruned mixtures instead of original ones. The mainstay of this method is to control the sub-mixtures size so that the Kurtosis is sharply concentrated about that of the entire mixtures with exponentially small error probabilities. Referring to the FastICA algorithm, it is shown that the dimensionality reduction proposed while assuring high quality of the source estimate yields to a significant reduction of the demixing time. In particular, it is experimentally shown that, in case of online applications, the pruning of blockwise stationary data is not only essential for guarantying the time-constraints keeping, but it is also effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S., Cichocki, A.: Recurrent neural networks for blind separation of sources. In: Proceedings of International Symposium on Nonlinear Theory and Applications, vol. I, pp. 37–42 (1995)

    Google Scholar 

  2. Comon, P.: Independent component analysis - a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  3. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  5. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9, 1483–1492 (1997)

    Article  Google Scholar 

  6. Jutten, C., Herault, J.: Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  7. Koldovský, Z., Málek, J., Tichavský, P., Deville, Y., Hosseini, S.: Blind separation of piecewise stationary non-gaussian sources. Signal Processing 89(12), 2570–2584 (2009)

    Article  Google Scholar 

  8. Tichavsky, P., Yeredor, A., Koldovsky, Z.: A fast asymptotically efficient algorithm for blind separation of a linear mixture of block-wise stationary autoregressive processes. In: ICASSP 2009: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3133–3136. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adamo, A., Grossi, G. (2010). Random Pruning of Blockwise Stationary Mixtures for Online BSS. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics