Skip to main content

Disorders in the Transport of Copper, Iron, Magnesium, Manganese, Selenium and Zinc

  • Chapter
Inborn Metabolic Diseases

Abstract

Copper balance is disturbed in two inborn errors: Wilson disease and Menkes disease. Wilson disease, or hepatolenticular degeneration, is caused by mutations in the ATP7B gene and is characterised by a gradual accumulation of copper in the liver and, secondarily, in other organs, such as brain, kidney and cornea. Clinical symptoms result from copper accumulation in the liver and/or the brain. Early treatment with copper chelators or zinc is generally effective. Menkes disease is an X-linked disorder due to mutations in the ATP7A gene. The disorder is characterised by a general copper deficiency. Patients manifest progressive neurodegeneration, which is usually fatal in infancy or childhood. Early therapy with copper histidine can be effective in selected patients. Occipital horn syndrome and a rare phenotype, X-linked distal hereditary motor neuropathy, are also due to ATP7A mutations and can be observed in older children or adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Bie P, Muller P, Wijmenga C, Klomp LW (2007) Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 44:673–688

    Article  PubMed  Google Scholar 

  2. Merle U, Schaefer M, Ferenci P, Stremmel W (2007) Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gut 56:115–120

    Article  PubMed  CAS  Google Scholar 

  3. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky MI (2007) Wilson’s disease. Lancet 369:397–408

    Article  PubMed  CAS  Google Scholar 

  4. Lang PA, Schenck M, Nicolay JP et al. (2007) Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13:164–170

    Article  PubMed  CAS  Google Scholar 

  5. Forbes JR, Cox DW (2000) Copper-dependent trafficking of Wilson disease mutant ATP7B proteins. Hum Mol Genet 9:1927–1935

    Article  PubMed  CAS  Google Scholar 

  6. Bull PC, Thomas GR, Rommens JM et al. (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337

    Article  PubMed  CAS  Google Scholar 

  7. Liu XQ, Zhang YF, Liu TT et al. (2004) Correlation of ATP7B genotype with phenotype in Chinese patients with Wilson disease. World J Gastroenterol 10:590–593

    PubMed  CAS  Google Scholar 

  8. Stapelbroek JM, Bollen CW, Ploos van Amstel JK, et al. (2004) The H1069Q mutation in ATP7B is associated with late and neurologic presentation in Wilson disease: results of a meta-analysis. J Hepatol 41:758–763

    Article  PubMed  CAS  Google Scholar 

  9. Ferenci P, Caca K, Loudianos G et al. (2003) Diagnosis and phenotypic classification of Wilson disease. Liver Int 23:139–142

    Article  PubMed  Google Scholar 

  10. Wiggelinkhuizen M, Tilanus MEC, Bollen CW, Houwen RHJ (2009) Systematic review: clinical efficacy of chelator agents and zinc in the initial treatment of Wilson disease. Aliment Pharmacol Ther 29:947–958

    Article  PubMed  CAS  Google Scholar 

  11. Dahlman T, Hartvig P, Löfholm M et al. (1995) Long-term treatment of Wilson’s disease with triethylene tetramine dihydrochloride (trientine). Q J Med 88:609–616

    CAS  Google Scholar 

  12. Czlonkowska A, Gajda J, Rodo M (1996) Effects of long-term treatment in Wilson’s disease with d-penicillamine and zinc sulphate. J Neurol 243:269–273

    Article  PubMed  CAS  Google Scholar 

  13. Linn FHH, Houwen RHJ, Hattum v J, Kleij v d S, Erpecum v KJ (2009) Long-term exclusive zinc monotherapy in symptomatic Wilson disease: experience in 17 patients. Hepatology 50:1442–1445

    Article  PubMed  CAS  Google Scholar 

  14. Brewer GJ, Askari F, Lorincz MT et al. (2006) Treatment of Wilson disease with ammonium tetrathiomolybdate. Arch Neurol 63:512–527

    Article  Google Scholar 

  15. Dhawan A, Taylor RM, Cheeseman P et al. (2005) Wilson’s disease in children: 37-year experience and revised King’s score for liver transplantation. Liver Transplant 11:441–448

    Article  Google Scholar 

  16. Kaler SG (1998) Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency. Am J Clin Nutr 67:1029S-1034S

    PubMed  CAS  Google Scholar 

  17. Tsukahara M, Imaizumi K, Kawai S, Kajii T (1994) Occipital horn syndrome: report of a patient and review of the literature. Clin Genet 45:32–35

    Article  PubMed  CAS  Google Scholar 

  18. Kennerson ML, Nicholson GA, Kaler SG et al. (2010) Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet 86:343–352

    Article  PubMed  CAS  Google Scholar 

  19. Tümer Z, Møller LB, Horn N (2003) Screening of 383 unrelated patients affected with Menkes disease and finding of 57 gross deletions in ATP7A. Hum Mutat 22:457–464

    Article  PubMed  Google Scholar 

  20. Møller LB, Tümer Z, Lund C et al. (2000) Similar splice-site mutations of the ATP7A gene lead to different phenotypes: classical Menkes disease or occipital horn syndrome. Am J Hum Genet 66:1211–1220

    Article  PubMed  Google Scholar 

  21. Kaler SG, Holmes CS, Goldstein DS et al. (2008) Neonatal diagnosis and treatment of Menkes disease. N Engl J Med 358:605–614

    Article  PubMed  CAS  Google Scholar 

  22. Tümer Z, Horn N (1998) Menkes disease: underlying genetic defect and new diagnostic possibilities. J Inherit Metab Dis 21:604–612

    Article  PubMed  Google Scholar 

  23. Kim BE, Smith K, Petris MJ (2003) A copper treatable Menkes disease mutation associated with defective trafficking of a functional Menkes copper ATPase. J Med Genet 40:290–295

    Article  PubMed  CAS  Google Scholar 

  24. Tanner MS (1998) Role of copper in Indian childhood cirrhosis. Am J Clin Nutr 67:1074S-1081S

    PubMed  CAS  Google Scholar 

  25. Müller T, Feichtinger H, Berger H, Müller W (1996) Endemic Tyrolean infantile cirrhosis: an ecogenetic disorder. Lancet 347:877–880

    Article  PubMed  Google Scholar 

  26. Müller T, Sluis v d B, Zhernakova A et al. (2003) The canine copper toxicosis gene MURR1 does not cause non-Wilsonian hepatic copper toxicosis. J Hepatol 38:164–168

    Article  PubMed  Google Scholar 

  27. Huppke P, Brendel C, Korenke C et al. (2010) Mutation in CCS, the copper chaperone for superoxide dismutase (SOD1), implies a novel disorder of human copper metabolism (abstract/program #207 Presented at the 60th Annual Meeting of the American Society for Human Genetics, 2–6 November 2010, Washington, D.C.)

    Google Scholar 

  28. Pietrangelo A (2010) Hereditary hemochromatosis. Pathogenesis, diagnosis and treatment. Gastroenterology 139:393–408

    Article  PubMed  Google Scholar 

  29. Franchini M (2006) Hereditary iron overload. Update on pathophysiology, diagnosis and treatment. Am J Hematol 81:202–209

    Article  PubMed  CAS  Google Scholar 

  30. Zhang AS, Enns CA (2009) Iron homeostasis. Recently identified proteins provide insight into novel control mechanisms. J Biol Chem 284:711–715

    Article  PubMed  CAS  Google Scholar 

  31. Adams PC, Barton JC (2010) How I treat hemochromatosis. Blood 116:317–325

    Article  PubMed  CAS  Google Scholar 

  32. Griffiths WJH, Mayr R, McFarlane I et al. (2010) Clinical presentation and molecular pathophysiology of autosomal dominant hemochromatosis caused by a novel ferroportin mutation. Hepatology 51:788–795

    PubMed  CAS  Google Scholar 

  33. Rand EB, Karpen SJ, Kelly S et al. (2009) Treatment of neonatal hemochromatosis with exchange transfusions and intravenous immunoglobulin. J Pediatr 155:566–571

    Article  PubMed  CAS  Google Scholar 

  34. Whitington PF, Kelly S (2008) Outcome of pregnancies at risk for neonatal hemochromatosis is improved by treatment with highdose intravenous immunoglobulin. Pediatrics 121:e1615-e1621

    Article  PubMed  Google Scholar 

  35. Hayflick SJ, Westaway SK, Levinson B et al. (2003) Genetic, clinical and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40

    Article  PubMed  CAS  Google Scholar 

  36. Gregory A, Polster BJ, Hayflick SJ (2009) Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 46:73–80

    Article  PubMed  CAS  Google Scholar 

  37. Kurian MA, Morgan NV, MacPherson L et al. (2008) Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 70:1623–1629

    Article  PubMed  CAS  Google Scholar 

  38. Harris ZL, Klomp LWJ, Gitlin JD (1998) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr 67:972S-977S

    PubMed  CAS  Google Scholar 

  39. Kono S, Miyajima H (2006) Molecular and pathological basis of aceruloplasminemia. Biol Res 39:15–23

    Article  PubMed  CAS  Google Scholar 

  40. Miyajima H, Takahashi Y, Kamata T et al. (1997) Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol 41:404–407

    Article  PubMed  CAS  Google Scholar 

  41. Kubota A, Hida A, Ichikawa Y et al. (2009) A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy. Description of clinical features and implications for genotype-phenotype correlations. Mov Disord 24:441–445

    Article  PubMed  Google Scholar 

  42. Finberg KE, Heeney MM, Campagna DR et al. (2008) Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet 40:569–571

    Article  PubMed  CAS  Google Scholar 

  43. Iolascon A, Camaschella C, Pospisilova D et al. (2008) Natural history of recessive inheritance of DMT1 mutations. J Pediatr 152:136–139

    Article  PubMed  CAS  Google Scholar 

  44. Shalev H, Phillip M, Galil A et al. (1998) Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child 78:127–130

    Article  PubMed  CAS  Google Scholar 

  45. Milla PJ, Aggett PJ, Wolff OH, Harries JT (1979) Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. Gut 20:1028–1033

    Article  PubMed  CAS  Google Scholar 

  46. Schlingmann KP, Sassen MC, Weber S et al. (2005) Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol 16:3061–3069

    Article  PubMed  Google Scholar 

  47. Chubanov V, Waldegger S, Schnitzler MM et al. (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA 101:2894–2899

    Article  PubMed  CAS  Google Scholar 

  48. Walder RY, Landau D, Meyer P et al. (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174

    Article  PubMed  CAS  Google Scholar 

  49. Schlingmann KP, Weber S, Peters M et al. (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170

    Article  PubMed  CAS  Google Scholar 

  50. Benigno V, Canonica CS, Bettinelli A et al. (2000) Hypomagnesaemia-hypercalciuria-nephrocalcinosis: a report of nine cases and a review. Nephrol Dial Transplant 15:605–610

    Article  PubMed  CAS  Google Scholar 

  51. Weber S, Schneider L, Peters M et al. (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12:1872–1881

    PubMed  CAS  Google Scholar 

  52. Konrad M, Schaller A, Seelow D et al. (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure and severe ocular involvement. Am J Hum Genet 79:949–957

    Article  PubMed  CAS  Google Scholar 

  53. Hou J, Renigunta A, Konrad M et al. (2008) Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118;619–628

    PubMed  CAS  Google Scholar 

  54. Geven WB, Monnens LA, Willems HL et al. (1987) Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int 31:1140–1144

    Article  PubMed  CAS  Google Scholar 

  55. Meij IC, Koenderink JB, Bokhoven v H et al. (2000) Dominant isolated renal magnesium loss is caused by misrouting of the Na+K+-ATPase γ-subunit. Nat Genet 26:265–266

    Article  PubMed  CAS  Google Scholar 

  56. Kantorovich V, Adams JS, Gaines JE et al. (2002) Genetic heterogeneity in familial renal magnesium wasting. J Clin Endocrinol Metab 87:612–617

    Article  PubMed  CAS  Google Scholar 

  57. Geven WB, Monnens LAH, Willems JL et al. (1987) Isolated autosomal recessive renal magnesium loss in two sisters. Clin Genet 32:398–402

    Article  PubMed  CAS  Google Scholar 

  58. Groenestege WMT, Thébault S, Wijst v d J et al. (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117:2260–2267

    Article  PubMed  CAS  Google Scholar 

  59. Crossgrove J, Zheng W (2004) Manganese toxicity upon overexposure. NMR Biomed 17:544–553

    Article  PubMed  CAS  Google Scholar 

  60. Erikson KM, Thompson K, Aschner J, Aschner M (2007) Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113:369–377

    Article  PubMed  CAS  Google Scholar 

  61. Tuschl K, Mills PB, Parsons H et al. (2008) Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia – a new metabolic disorder. J Inherit Metab Dis 31:151–63

    Article  CAS  Google Scholar 

  62. Gospe SM, Caruso RD, Clegg MS et al. (2000) Paraparesis, hypermanganesaemia, and polycythaemia: a novel presentation of cirrhosis. Arch Dis Child 83:439–442

    Article  PubMed  Google Scholar 

  63. Schoenmakers E, Agostine M, Mitchell C et al. (2010) Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest 120:4220–4234

    Article  PubMed  CAS  Google Scholar 

  64. Dumitrescu AM, Liao XH, Abdullah MSY et al. (2005) Mutations in SECIS result in abnormal thyroid hormone metabolism. Nat Genet 37:1247–1252

    Article  PubMed  CAS  Google Scholar 

  65. Agamy O, Zeev BB, Lev D et al. (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87:538–544

    Article  PubMed  CAS  Google Scholar 

  66. Aggett PJ (1983) Acrodermatitis enteropathica. J Inherit Metab Dis 6:39S-43S

    Article  Google Scholar 

  67. Van Wouwe JP (1989) Clinical and laboratory diagnosis of acrodermatitis enteropathica. Eur J Pediatr 149:2–8

    Article  PubMed  Google Scholar 

  68. Lombeck I, Schnippering HG, Ritzl F et al. (1975) Absorption of zinc in acrodermatitis enteropathica. Lancet 1:855

    Article  PubMed  CAS  Google Scholar 

  69. Atherton DJ, Muller DPR, Aggett PJ, Harries JT (1979) A defect in zinc uptake by jejunal biopsies in acrodermatitis enteropathica. Clin Sci 56:505–507

    PubMed  CAS  Google Scholar 

  70. Küry S, Dréno B, Bézieau S et al. (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31:239–240

    Article  PubMed  Google Scholar 

  71. Wang K, Zhou B, Kuo YM et al. (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73

    Article  PubMed  CAS  Google Scholar 

  72. Schmitt S, Küry S, Giraud M et al. (2009) An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica. Hum Mutat 30:926–933

    Article  PubMed  CAS  Google Scholar 

  73. Antilla PH, Willebrand v E, Simell O (1986) Abnormal immune responses during hypozincaemia in acrodermatitis enteropathica. Acta Paediatr Scand 75:988–992

    Article  Google Scholar 

  74. Neldner KH, Hambidge KM (1975) Zinc therapy of acrodermatitis enteropathica. N Engl J Med 292:879–882

    Article  PubMed  CAS  Google Scholar 

  75. Stevens J, Lubitz L (1998) Symptomatic zinc deficiency in breastfed term and premature infants. J Paediatr Child Health 34:97–100

    Article  PubMed  CAS  Google Scholar 

  76. Chowanadisai W, Lönnerdal B, Kelleher SL (2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281:39699–39707

    Article  PubMed  CAS  Google Scholar 

  77. Sampsom B, Fagerhol MK, Sunderkötter C et al. (2002) Hyperzincaemia and hypercalprotectinaemia: a new disorder of zinc metabolism. Lancet 360:1742–1745

    Article  Google Scholar 

  78. Isidor B, Poignant S, Corradini N et al. (2009) Hyperzincemia and hypercalprotectinemia: unsuccessful treatment with tacrolimus. Acta Paediatr 98:410–412

    Article  PubMed  CAS  Google Scholar 

  79. Smith JC, Zeller JA, Brown ED, Ong SC (1976) Elevated plasma zinc: a heritable anomaly. Science 193:496–498

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bierings, M., Clayton, P.T., Houwen, R.H. (2012). Disorders in the Transport of Copper, Iron, Magnesium, Manganese, Selenium and Zinc. In: Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15720-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15720-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15719-6

  • Online ISBN: 978-3-642-15720-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics