Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 75))

Abstract

Assistive devices are a key aspect in wearable systems for biomedical applications, as they represent potential aids for people with physical and sensory disabilities that might lead to improvements in the quality of life. This chapter focuses on wearable assistive devices for the blind. It intends to review the most significant work done in this area, to present the latest approaches for assisting this population and to understand universal design concepts for the development of wearable assistive devices and systems for the blind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World Health Organization, Visual impairment and blindness - Fact Sheet N°282 (2009), http://www.who.int/mediacentre/factsheets/fs282/en/

  2. Blind World Magazine, Breaking the chains of paternalism (2006), http://home.earthlink.net/~blindworld/NEWS/6-06-14-02.htm

  3. Brabyn, J., Seelman, K., Panchang, S.: Aids for people who are blind or visually impaired. In: Cooper, R., Ohnabe, H., Hobson, D. (eds.) An Introduction to Rehabilitation Engineering, pp. 287–313. Taylor & Francis, Abington (2007)

    Google Scholar 

  4. Moore, B.: An introduction to the psychology of hearing, 5th edn. Elsevier Academic Press, Amsterdam (2003)

    Google Scholar 

  5. Hakkinen, J., Vuori, T., Paakka, M.: Postural stability and sickness symptoms after HMD use. In: Proc. of IEEE International Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, pp. 147–152 (2002)

    Google Scholar 

  6. Kandel, E., Jessell, T.: Touch. In: Kandel, E., Schwartz, J., Jessell, T. (eds.) Principles of neural science, 3rd edn., pp. 349–414. Oxford University Press, Oxford (1991)

    Google Scholar 

  7. Sekuler, R., Blake, R.: Perception. McGraw-Hill Education, New York (2002)

    Google Scholar 

  8. Geiger, S.: Handbook of physiology section 1: the nervous system. American Physiological Society (1984)

    Google Scholar 

  9. Weinstein, S.: Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In: Kenshalo, D. (ed.) The skin senses, Charles C. Thomas, pp. 195–222 (1968)

    Google Scholar 

  10. Wagner, C., Lederman, S., Howe, R.: Design and performance of a tactile shape display using RC servomotors. In: Proc. of 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Orlando, Fl, USA, pp. 354–355 (2002)

    Google Scholar 

  11. Fischer, H., Neisius, B., Trapp, R.: Tactile feedback for endoscopic surgery. In: Satava, R., Morgan, K., Sieburg, H., Mattheus, R., Christensen, J. (eds.) Interactive Technology and the New Paradigm for Healthcare, pp. 114–117. IOS Press, Amsterdam (1995)

    Google Scholar 

  12. Summers, I., Chanter, C.: A broadband tactile array on the fingertip. Journal of the Acoustical Society of America 112, 2118–2126 (2002)

    Article  Google Scholar 

  13. Vidal, F., Madueño, M., Navas, R.: Thermo-pneumatic actuator for tactile displays and smart actuation circuitry. In: Proc. of SPIE International Symposium on Microtechnologies for the New Millenium, Sevilla, Spain, pp. 484–492 (2005)

    Google Scholar 

  14. Velazquez, R., Pissaloux, E., Hafez, M., Szewczyk, J.: Tactile rendering with shape memory alloy pin-matrix. IEEE Transactions on Instrumentation and Measurement 57(5), 1051–1057 (2008)

    Article  Google Scholar 

  15. Konyo, M., Tadokoro, S., Takamori, T.: Artificial tactile feel display using soft gel actuators. In: Proc. of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 3416–3421 (2000)

    Google Scholar 

  16. Taylor, P., Pollet, D., Hosseini, A., Varley, C.: Advances in an electrorheological fluid based tactile array. Displays 18, 135–141 (1998)

    Article  Google Scholar 

  17. Hoshi, T., Iwamoto, T., Shinoda, H.: Non-contact tactile sensation synthesized by ultrasound transducers. In: Proc. of 3rd Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA, pp. 256–260 (2009)

    Google Scholar 

  18. Koo, I., Kwangmok, J., Koo, J., Nam, J., Lee, Y., Choi, H.: Development of soft-actuator-based wearable tactile display. IEEE Transactions on Robotics 24(3), 549–558 (2008)

    Article  Google Scholar 

  19. Amemiya, T., Yamashita, J., Hirota, K., Hirose, M.: Virtual leading blocks for the deaf-blind: a real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space. In: Proc. of IEEE Virtual Reality, Chicago, Il, USA, pp. 165–172 (2004)

    Google Scholar 

  20. Ng, G., Barralon, P., Dumont, G., Schwarz, S., Ansermino, J.: Optimizing the tactile display of physiological information: vibro-tactile vs. electro-tactile stimulation, and forearm or wrist location. In: Proc. of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 4202–4205 (2007)

    Google Scholar 

  21. Bach-Rita, P., Kaczmarek, K., Tyler, M., Garcia-Lara, J.: From perception with a 49-point electrotactile stimulus array on the tongue: a technical note. Journal of Rehabilitation Research and Development 35(4), 427–430 (1998)

    Google Scholar 

  22. Ptito, M., Moesgaard, S., Gjedde, A., Kupers, R.: Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain 128, 606–614 (2005)

    Article  Google Scholar 

  23. Vuillerme, N., Pinsault, N., Chenu, O., Fleury, A., Payan, Y., Demongeot, J.: A wireless embedded tongue tactile biofeedback system for balance control. In: Pervasive and Mobile Computing, vol. 5, pp. 268–275 (2009)

    Google Scholar 

  24. National Library Service for the Blind and Physically Handicapped. Updated information, http://www.loc.gov/nls/

  25. Kay, L.: A sonar aid to enhance spatial perception of the blind: engineering design and evaluation. Radio and Electronic Engineer 44(11), 605–627 (1974)

    Article  Google Scholar 

  26. SonicVision. Updated information, http://www.sonicvision.co.nz

  27. GDP Research Australia Updated information, http://www.gdp-research.com.au

  28. Bay Advanced Technologies Ltd. Updated information, http://www.batforblind.co.nz

  29. Meijer, P.: An experimental system for auditory image representations. IEEE Transactions on Biomedical Engineering 39(2), 112–121 (1992)

    Article  Google Scholar 

  30. Seeing with Sound - The vOICe. Updated information, http://www.seeingwithsound.com

  31. Velazquez, R., Fontaine, E., Pissaloux, E.: Coding the environment in tactile maps for real-time guidance of the visually impaired. In: Proc. of IEEE International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan (2006)

    Google Scholar 

  32. Gemperle, F., Ota, N., Siewiorek, D.: Design of a wearable tactile display. In: Proc. of. 5th International Symposium on Wearable Computers, Zurich, Switzerland, pp. 5–12 (2001)

    Google Scholar 

  33. van Veen, H., van Erp, J.: Providing directional information with tactile torso displays. In: Proc. of EuroHaptics 2003, Dublin, Ireland, pp. 471–474 (2003)

    Google Scholar 

  34. Jones, L., Lockyer, B., Piateski, E.: Tactile display and vibrotactile pattern recognition on the torso. Advanced Robotics 20, 1359–1374 (2006)

    Article  Google Scholar 

  35. Borenstein, J.: The NavBelt - A computerized multi-sensor travel aid for active guidance of the blind. In: Proc. of CSUN’s 5th Annual Conference on Technology and Persons with Visual Disabilities, Los Angeles, CA, USA, pp. 107–116 (1990)

    Google Scholar 

  36. Tsukada, K., Yasumrua, M.: ActiveBelt: belt-type wearable tactile display for directional navigation. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 384–399. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  37. Nagel, S., Carl, C., Kringe, T., Märtin, R., König, P.: Beyond sensory substitution-learning the sixth sense. Journal of Neural Engineering 2, R13–R26 (2005)

    Article  Google Scholar 

  38. Allum, J., Bloem, B., Carpenter, M., Hulliger, M., Hadders, M.: Proprioceptive control of posture: a review of new concepts. Gait and Posture 8, 214–242 (1998)

    Article  Google Scholar 

  39. Velazquez, R., Bazan, O., Magaña, M.: A shoe-integrated tactile display for directional navigation. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 1235–1240 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Velázquez, R. (2010). Wearable Assistive Devices for the Blind. In: Lay-Ekuakille, A., Mukhopadhyay, S.C. (eds) Wearable and Autonomous Biomedical Devices and Systems for Smart Environment. Lecture Notes in Electrical Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15687-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15687-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15686-1

  • Online ISBN: 978-3-642-15687-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics