Skip to main content

Computer Simulation on the Compaction of Chromatin Fiber Induced by Salt

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

We present a computer simulation on the compaction of 30-nanometer chromatin fiber induced by salt. The nucleosome is represented as rigid oblate ellipsoids without consideration of DNA-histone wrapping conformation. It is found that equilibrium conformations of multi-nucleosome chains at physiological ionic concentrations are more or less random “zig-zag” structures. Moreover, the diameter, the linear mass density and the persistence length of fiber show a strong dependence on the ion strength. The computational results show us that decreasing the salt strength from 0.15M to 0.01M leads to an increase in the diameter and the linear mass density and a decrease in the persistence length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holde, K.v., Zlatanova, J.: What determines the folding of the chromatin fiber? J. Proc. Natl. Acad. Sci. USA 93, 10548–10555 (1996)

    Article  Google Scholar 

  2. Horowitz, R.A., et al.: Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J. Cell Biol. 131, 1365–1376 (1994)

    Google Scholar 

  3. Schiessel, H., Gelbart, W.M., Bruinsma, R.: DNA folding: Structural and mechanical properties of the two-angle model for chromatin. J. Biophys. 80, 1940–1956 (2001)

    Article  Google Scholar 

  4. Woodcock, C.L., Dimitrov, S.: Higher-order structure of chromatin and chromosomes. J. Curr. Opin. Genet. Dev. 11(2), 130–135 (2001)

    Article  Google Scholar 

  5. Woodcock, C.L., et al.: A chromation folding model that incorporates linker variability generates fibers resembling the native structures. J. Proc. Natl. Acad. Sci. USA 90, 9021–9025 (1993)

    Article  Google Scholar 

  6. Mergell, B., Everaers, R., Schiessel, H.: Nucleosome interactions in chromatin: Fiber stiffening and hairpin formation. J. Phys. Rev. E 70, 11915 (2004)

    Article  Google Scholar 

  7. Sun, J., Zhang, Q., Schlick, T.: Electrostatic mechanism of nucleosomal array folding revealed by computer simulation. J. Proc. Natl. Acad. Sci. USA 102, 8180–8185 (2005)

    Article  Google Scholar 

  8. Finch, J.T., Klug, A.: Solenoidal model for superstructure in chromatin. J. Proc. Natl. Acad. Sci. USA 73, 1897–1901 (1976)

    Article  Google Scholar 

  9. Yao, J., Lowary, P.T., Widom, J.: Direct detection of linker DNA bending in defined-length oligomers of chromatin. J. Proc. Natl. Acad. Sci. USA 87, 7603–7607 (1990)

    Article  Google Scholar 

  10. Yao, J., Lowary, P.T., Widom, J.: Linker DNA bending induced by the core histones of chromatin. J. Biochemistry 30(34), 8408–8414 (1991)

    Article  Google Scholar 

  11. Marion, C., et al.: Conformation of chromatin oligomers. A new argument for a change with the hexanucleosome. J. Eur. J. Biochem. 120, 169–176 (1981)

    Article  Google Scholar 

  12. Bednar, J., et al.: Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. J. Proc. Natl. Acad. Sci. USA 95, 14173–14178 (1998)

    Article  Google Scholar 

  13. Zlatanova, J., Leuba, S.H., Holde, K.v.: Chromatin fiber structure: morphology, molecular determinants, structural transitions. J. Biophys. 74, 2554–2566 (1998)

    Article  Google Scholar 

  14. Leuba, S.H., et al.: Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. J. Proc. Natl. Acad. Sci. USA 91, 11621–11625 (1994)

    Article  Google Scholar 

  15. Wedemann, G., Langowski, J.: Computer simulation of the 30-nanometer chromatin fiber. J. Biophys. 82(6), 2847–2859 (2002)

    Article  Google Scholar 

  16. Aumann, F., et al.: Monte Carlo simulation of chromatin stretching. J. Phys. Rev. E. 73, 041927 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zuo, CC., Zhao, YW., Zuo, YX., Ji, F., Zheng, H. (2010). Computer Simulation on the Compaction of Chromatin Fiber Induced by Salt. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics