Skip to main content

Material Selection and Manufacturing Processes for Composite Insulators with Silicone Rubber Housing

  • Chapter
Silicone Composite Insulators

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter reports on the latest materials and production processes used in the manufacture of composite insulators. It also looks back at the development of rod materials as well as experiences relating to the in-house manufacture of glass-fibre reinforced semi-finished parts. PFISTERER SEFAG AG has more than thirty years of experience in processing low viscosity silicone rubber (namely room temperature vulcanising (RTV) rubber and, more recently, liquid silicone rubber (LSR) as well as high viscosity solid silicone rubber (namely high temperature vulcanising (HTV) rubber). Given this level of experience and silicone rubber’s acknowledged importance as a reliable housing material, this chapter will focus on providing a detailed account of this group of materials. As a result of the close interaction between material formulations, applicable manufacturing processes and operation-relevant properties, the results of key material analyses will also be presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Area, when test solution is applied to surface

AE:

Area, when test solution is extracted from surface

AC:

Alternating current (voltage)

ACIM:

Automated continuous injection moulding

AE:

Acoustic emission

AQL:

Acceptable quality level

ATH:

Aluminium trihydrate, Aluminium hydroxide

C0…C7:

Silicone compound description code

CIGRE:

Conseil International des Grands Reseaux Électriques (International Council for Large Electric Systems)

D:

Start point of an indexed variable

DA:

Diameter, when test solution is applied to surface

DE:

Diameter, when test solution is extracted from surface

DSC:

Differential scanning calorimetry

d:

Rod diameter

dF:

Fibre diameter

E:

Electrical field stress

E-CR or ECR-Glass:

Corrosion-resistant glass fibre for electrotechnical applications

E-:

SCA electron spectroscopy for chemical analysis

FMEA:

Failure mode and effects analysis

FIFO:

First in, first out principle

GFK:

Glass-fibre reinforced plastic

HDK:

Fine-particle silica

HV:

High voltage

HTV:

High temperature vulcanising

IEC:

International Electrotechnical Commission

LMW:

Low molecular weight (chains)

LSR:

Liquid silicone rubber

M1…MX:

Material description code

Mb:

Bending moment

MDA:

Mix and dosing equipment

mL:

Mass loss

N:

Number

RCC:

Company name

SEM:

Scanning electron microscope

RTV:

Room temperature vulcanising

RTV-1:

Room temperature vulcanising 1-component system

RTV-2:

Room temperature vulcanising 2-component system

SR:

Silicone rubber

tex:

Tex number (length mass of a fibre)

TG:

Glass transition temperature

TGA:

Thermo-gravimetric analysis

tF:

Time to failure

tRe:

Rest time

tT:

Test time

tRec:

Recovery time

tTr:

Time of transfer

tL:

Time to loss of a specific property

vP:

Speed of pultrusion

α:

Coefficient of thermal expansion

Δ:

Relative displacement

γ:

Surface tension

θ:

Contact angle

θR:

Receding contact angle

θS:

Static contact angle

θA:

Advancing contact angle

References

  1. Gubanski SM, Derfalk A, Andersson J, Hillborg H (2007) Diagnostic methods for outdoor polymeric insulators. IEEE Trans Dielectr Electr Insul 14(5):1065–1080

    Article  Google Scholar 

  2. Papailiou KO (1999) Grenzflächen bei Silikon-Verbundisolatoren, Bulletin SEV/VSE 21/1999

    Google Scholar 

  3. Ansorge S, Camendzind A, Pratsinis SE, Ammann M, Schmuck F, Papailiou KO (2008) Evaluation of silicone rubber housing interfaces after service exposure and performance improvements by nanofillers enriched silicone rubbers. Paper B2-208, CIGRE 2008

    Google Scholar 

  4. Ammann M, Papailiou KO, Ansorge S, Schmuck F (2008) Zur Bewertung von Verbundisolatoren und deren relevanten Interfacebereichen nach Freilufteinsatz. ETG Fachtagung Grenzflächen in elektrischen Isoliersystemen, September 2008

    Google Scholar 

  5. IEC TR 62039 Ed. 1 (2007) Selection guide for polymeric materials for outdoor use under HV stress

    Google Scholar 

  6. CIGRE Working Group D1.14 (2004) Material properties for non-ceramic out-door insulation: state of the art. Technical Brochure 255, 2004

    Google Scholar 

  7. IEC 60587 Ed. 3 (2007) Electrical insulating materials used under severe ambient conditions—test methods for evaluating resistance to tracking and erosion

    Google Scholar 

  8. IEC 60343 Ed. 2 (1991) Recommended test methods for determining the relative resistance of insulating materials to breakdown by surface di-scharges

    Google Scholar 

  9. IEC 62217 Ed 1 (2005) Polymeric insulators for indoor and outdoor use with a nominal voltage >1,000 V—general definitions, test methods and acceptance criteria

    Google Scholar 

  10. IEC 60250 Ed. 1 (1969) Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including metre wavelengths

    Google Scholar 

  11. ISO 34-1 (2010) Rubber, vulcanized or thermoplastic—determination of tear strength—part 1: trouser, angle and crescent test pieces

    Google Scholar 

  12. DIN 53504 (2009) Prüfung von Kautschuk und Elastomeren—Bestimmung von Reißfestigkeit, Zugfestigkeit, Reißdehnung und Spannungswerten im Zugversuch

    Google Scholar 

  13. IEC 60093 Ed. 2 (1980) Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials

    Google Scholar 

  14. IEC 60243-1 Ed. 2 (1998) Electrical strength of insulating materials—test methods—part 1: tests at power frequencies

    Google Scholar 

  15. IEC 60243-3 Ed 2 (2001) Electric strength of insulating materials–test methods—part 3: additional requirements for 1.2/50 µs impulse tests

    Google Scholar 

  16. ISO 4892-2 (2010) Kunststoffe—Künstliches Bestrahlen oder Bewittern in Geräten–Teil 2: Xenonbogenlampen (ISO 4892-2:2006/Amd 1:2009); Änderung A1

    Google Scholar 

  17. ISO 4892-3 (2006) Kunststoffe—Künstliches Bestrahlen oder Bewittern in Geräten—Teil 3: UV-Leuchtstofflampen (ISO 4892-3:2006)

    Google Scholar 

  18. IEC 60695-11-10 Ed. 1.1 (2003) Fire hazard testing—part 11-10: Test flames–50 W horizontal and vertical flame test methods

    Google Scholar 

  19. IEC 61621 Ed. 1 (1997) Dry, solid insulating materials—resistance test to high-voltage, low-current arc discharges

    Google Scholar 

  20. P-IEC 61006 Ed. 2 (2004) Electrical insulating materials–methods of test for the determination of the glass transition temperature

    Google Scholar 

  21. Kindersberger J, Bärsch R Grenzfläche Feststoff-Gas—Beanspruchungen, Wechselwirkungen, Design, Prüfverfahren, Lebensdauer. ETG Tagung. ETG Fachtagung “Grenzflächen in elektrischen Isoliersystemen” März 2005, Hanau, ETG-Fachbericht 99,VDE-Verlag GmbH Berlin Offenbach, S. 7-26

    Google Scholar 

  22. State of the Art Report On behalf of Study Committees 15 and 33 presented by Working Group 33/15.08 (1990) Dielectric diagnosis of electrical equipment for AC applications and its effects on insulation coordination. CIGRE Technical Brochure 059

    Google Scholar 

  23. Haas A, Kindersberger J (2009) Determination of ageing of polymeric insulating materials by thermal analysis methods. In: Proceedings of the 16th international symposium on high voltage engineering, 2009 SAIEE. Innes House, Johannesburg, RSA

    Google Scholar 

  24. Gutman I (2004) STRI guidelines for diagnostics of composite insulators, for visual inspections; for hydrophobicity; for ir helicopter inspections. In: International conference on suspension and post composite insulators: manufacturing, technical requirements, test methods, service experience, diagnostics. St. Petersburg October 2004

    Google Scholar 

  25. IEC 60120 Ed 3 (1984)Dimensions of ball and socket couplings of string insulator units

    Google Scholar 

  26. IEC 60471 Ed. 2 (1977) und Amendment 1:1980 (Dimensions of clevis and tongue couplings of string insulator units)

    Google Scholar 

  27. IEC 61466-1 Ed 1 (1997) Composite string insulator units for overhead lines with a nominal voltage greater than 1,000 V—part 1: standard strength classes and end fittings

    Google Scholar 

  28. IEC 61466-2 Ed 1.1 (2002) Composite string insulator units for overhead lines with a nominal voltage greater than 1,000 V—part 2: dimensional and electrical characteristics

    Google Scholar 

  29. IEC 60383-1 Ed 4 (1993) Insulators for overhead lines with a nominal voltage above 1,000 V—part 1: ceramic or glass insulator units for a.c. systems–definitions, test methods and acceptance criteria

    Google Scholar 

  30. DIN EN ISO 2178 (1995) Nichtmagnetische Überzüge auf magnetischen Grundmetallen—Messen der Schichtdicke—Magnetverfahren

    Google Scholar 

  31. DIN EN ISO 6506-1 (2005) Metallische Werkstoffe–Härteprüfung nach Brinell–Teil 1: Prüfverfahren

    Google Scholar 

  32. Schürmann H (2007) Konstruieren mit Faser-Kunststoff-Verbunden. Springer, ISBN 978-3-540-72189-5

    Google Scholar 

  33. Culimeta (2010) Isolier- und Abschirmtechnik. Factbook, 9/2010

    Google Scholar 

  34. de Tourreil C, Schmuck F (2004) On behalf of CIGRE working group B2.03: brittle fractures of composite insulators—field experience, occurrence and risk assessment. Electra No. 214 June 2004

    Google Scholar 

  35. de Tourreil C, Schmuck F (2004) On behalf of CIGRE working group B2.03: brittle fractures of composite insulators—failure mode chemistry, influence of resin variations and search for a simple insulator core evaluation test method. Electra No. 215 August 2004

    Google Scholar 

  36. Schijver C (1998) Optimierung der elektrischen Eigenschaften glasfaserverstärkter Kunststoffe. Dissertation 1998, Shaker, ISBN 3-8265-3842-0

    Google Scholar 

  37. Lange J (1993) Rohstoffe der Glasindustrie. Deutscher Verlag für Grundstoffindustrie, Leipzig 1993, ISBN 3-342-00663-3

    Google Scholar 

  38. Patent US 000004199364A (1980) Glass composition, 22 Apr 1980

    Google Scholar 

  39. Owens/Corning Fiberglass (1991) ECRGLAS—technical status

    Google Scholar 

  40. Bunker BC, Arnold GW, Day DE, Bray PJ (1986) The effect of molecular structure on borosilicate leaching. J Non-Cryst Solids 87:226–253

    Google Scholar 

  41. Armentrout D, Kumosa M, Kumosa L (2004) Water diffusion into and electrical testing of composite insulator GRP rods. IEEE Trans Dielectr Electr Insul 11(3):506–522

    Article  Google Scholar 

  42. PPG Industries Fiber Glass (1995) E-Glass and ECR-Glass pultrusions dielectric breakdown voltage. Firmenreport

    Google Scholar 

  43. Schramm J (1985) Über den Einfluss von Mikrohohlräumen auf die elektrische Festigkeit glasfaserverstärkter Epoxidharzformstoffe. Dissertation

    Google Scholar 

  44. Kuhl M (2001) FRP rods for brittle fracture resistant composite insulators. IEEE Trans Dielectr Electr Insul 8(2), April 2001

    Article  Google Scholar 

  45. Schütz A (2000) The history of rodurflex—quite a long story covering more than 3 decades. LAPP Firmenbroschüre

    Google Scholar 

  46. Patent US 000004542106A (1985) Glass composition 17, Sept 1985

    Google Scholar 

  47. McQuarrieTS (1999) Improved dielectric and brittle fracture resistant core rods for non-ceramic insulators. INMR Congress, Barcelona

    Google Scholar 

  48. Neitzel M, Breuer U (1997) Die Verarbeitungstechnik der Faser-Kunststoff-Verbunde. Hanser, ISBN 3-446-19012-0

    Google Scholar 

  49. Domininghaus H, Elsner P, Eyerer P, Hirth T (2008) Kunststoffe. Springer, ISBN 978-3-540-72400-1

    Google Scholar 

  50. Phillips A, Bologna F, Shaw T (2009) Application of corona rings at 115 and 138 kV. EPRI-Document 1015917 2008, CIGRE WG B2.21 IWD 063-2009

    Google Scholar 

  51. Kumosa LS, Kumosa MS, Armentrout DL (2005) Resistance to brittle fracture of glass reinforced polymer composites used in composite (nonceramic) insulators. IEEE Trans Power Delivery 20(4):2657–2666

    Article  Google Scholar 

  52. Kumosa M, Kumosa L, Armentrout D (2005) Failure analyses of nonceramic insulators part 1: brittle fracture characteristics. IEEE Electr Insul Mag 21(3):14–27

    Article  Google Scholar 

  53. Kumosa M, Kumosa L, Armentrout D (2005) Failure analyses of nonceramic insulators: part II—the brittle fracture model and failure prevention. IEEE Electr Insul Mag 21(4):28–41

    Article  Google Scholar 

  54. Chughtai AR, Smith DM, Kumosa LS, Kumosa M (2004) FTIR analysis of non-ceramic compos-ite insulators. IEEE Trans Dielectr Electr Insul 11(4):585–596

    Article  Google Scholar 

  55. Liang X, Wang J, Dai J (2010) Surface micro-crack initiated brittle fracture in fiber reinforced plastic rod of composite insulator. IEEE Trans Dielectr Electr Insul 17(2):368–374

    Article  Google Scholar 

  56. Liang X, Fan J, Chen L (2000) Research on the brittle fracture of FRP rods and its acoustic emission detection. IEEE PES 2000WM, Paper 16-19-01, January 2000

    Google Scholar 

  57. Huiber W, Papailiou KO, Peter M, Schmuck F (2001) Increased installation performance and application solutions using composite insulators—a manufacturerer`s philosophy. INMR World Insulator Congress 2001, Shanghai

    Google Scholar 

  58. IEC TR 62662 Ed1 (2010) Guidance for production, testing and diagnostics of polymer insulators with respect to brittle fracture of core materials

    Google Scholar 

  59. IEC 61109 Ed. 2 (2008) Composite suspension and tension insulators for a.c. overhead lines with a nominal voltage greater than 1,000 V–Definitions, test methods and acceptance criteria

    Google Scholar 

  60. Hill B, Sklenicka V, Schmuck F (2010) On behalf of CIGRE WG B2.21: investigation of different liquid solutions for dye penetration tests used in standard IEC 62217 for design and routine testing. ELEKTRA 251_1. 2010

    Google Scholar 

  61. Büchner H, Schmuck F, Zanetti A (1997) Cellpack’ s cevosil—10 years of technical and marketing experience 3. Symposium on non-ceramic insulators in Miami 1997

    Google Scholar 

  62. Schmuck F (1998) Cevosil composite hollow insulator—facts, history, state of the art and design basics. Factbook 1998, Cellpack AG

    Google Scholar 

  63. Rocchetti G, Moal E (2005) Computer-simulated design of high performance hollow core insulators for specialized applications. INMR Congress 2005, Hong-Kong

    Google Scholar 

  64. Chu FY (1986) SF6 Decomposition in gas-insulated equipment. IEEE Trans Electr Insul 21:693—725

    Google Scholar 

  65. Piemontesi M, Niemeyer L (1996) Surface reactions of SF6 decomposition products. CEIDP S. Francisco 1996

    Google Scholar 

  66. Eidinger A, Schaumann R (1979) Schwefelhexaflourid

    Google Scholar 

  67. Hinrichsen V, Möhring N, Wietoska T, Haupt H, Bockenheimer A, Heinemann C, Berger C, Gottschalk I, Kurda N, Mikli N, Schmuck F, Seifert J (2010) Resistance to vapour permeation of factory new and of mechanically stressed composite hollow insulators. CIGRE Paris 2010, A3-304_2010

    Google Scholar 

  68. CIGRE WG A3.21 (2011) Aspects for the application of composite insulators to high voltage (≥72 kV) apparatus technical brochure 455, April 2011

    Google Scholar 

  69. Tomanek A (1991) Silicones and industry. Hanser, ISBN 3-446-17264-5

    Google Scholar 

  70. Patent DE 2650363 C2 (1976) Verbundisolator für Hochspannungsfreiluft-Anwendungen, 3 Nov 1976

    Google Scholar 

  71. Cherney EA, Burnham JT, Gorur RS (1999) Outdoor insulators, ISBN 0967761107

    Google Scholar 

  72. Schmuck F (1992) Zur zeitraffenden Alterungsprüfung von Silikongummi-Oberflächen unter Fremdschichtbelastung und simultaner 50 Hz-Spannungsbeanspruchung. Dissertation 1992, HTWS Zittau, Germany

    Google Scholar 

  73. Schmuck F, Bärsch R (1993) Electrochemical and microbiological phenomena during accelerating ageing tests of polymeric insulators 8. ISH Yokohama

    Google Scholar 

  74. Schmuck F, Ramm W (1991) Zum Einfluss einer biologischen Wechselwirkung zwischen polymerem Isolierstoff und Prüfmilieu während zeitraffender Alterungsprüfungen mit fließenden Fremdschichten. Elektrie 11/1991

    Google Scholar 

  75. Winter HJ, Bärsch R (2006) Oberflächenverhalten von Siliconelastomeren unter Feuchte- und biogenen Belastungen. RCC Konferenz, Berlin 2006

    Google Scholar 

  76. Neumann C (2003) Betriebsverhalten von Verbundisolatoren, ETG-Fachbericht 93, VDE-Verlag 2003

    Google Scholar 

  77. Gubanski S, Derfalk A, Wallström S, Karlsson S (2005) Biological contamination of insulators: influence on performance and diagnostic techniques to assess the problem. INMR World Insulator Congress 2005 Hongkong

    Google Scholar 

  78. Fernando MARM, Gubanski SM (2010) Ageing of silicone rubber insulators in coastal and inland tropical environment. IEEE Trans Dielectr Electr Insul 17(2):326–333

    Google Scholar 

  79. Fernando MARM, Rajamantri H, Gubanski SM (2006) Performance of silicone rubber composite insulators in Sri Lanka. First international conference on industrial and information systems, ICIIS 2006, 8–11 Aug 2006, Sri Lanka

    Google Scholar 

  80. Gubanski SM, Karlsson S, Fernando MARM (2006) Performance of biologically contaminated high voltage insulators. ICIIS 2006, 8–11 Aug 2006, Sri Lanka

    Google Scholar 

  81. Bärsch R, Kuhl M (1999) Betriebserfahrungen und Untersuchungen an Kunststoffisolatoren in eine 20 kV-Leitung auf der Insel Nordstrand. ETG-Fachbericht 76 S:249–257

    Google Scholar 

  82. Papailiou KO, Peter M, Fluri W, Schmuck F (2003) A review of material development, recent 420 kV braced line post designs and long-term evaluation of composite insulators in silicone rubber technology. INMR Insulator Symposium 2003 Marbella

    Google Scholar 

  83. George J-M (2009) Review of polymer materials and design considerations based on field experience and laboratory testing. INMR Congress 2009, Kreta

    Google Scholar 

  84. Korrespondenz mit HJ Winter, Wacker Chemie AG. Burghausen, Germany: Thermisches Verhalten von ATH

    Google Scholar 

  85. Kumagai S, Yoshimura N (2001) Tracking and erosion of HTV silicone rubber and suppression mechanism of ATH. IEEE Trans Dielectr Electr Insul 8(2):673–678

    Article  Google Scholar 

  86. Schmidt LE, Kornmann X, Krivda A, Hillborg H (2010) Tracking and erosion resistance of high temperature vulcanizing ATH-free silicone rubber. IEEE Trans Dielectr Electr Insul 17(2):533–540

    Article  Google Scholar 

  87. Kautschuk Gummi Kunststoffe 10/2006

    Google Scholar 

  88. Meyer LH, Jayaram SH, Cherney EA (2005) A novel technique to evaluate the erosion resistance of silicone rubber composites for high voltage outdoor insulation using infrared laser erosion. IEEE Trans Dielectr Electr Insul 12:1201–1208

    Google Scholar 

  89. Ansorge S, Schmuck F, Papailiou KO (2011) Improved silicone rubbers for the use as housing material in composite insulators. Trans Dielectr Electr Insul 19 (1)

    Article  Google Scholar 

  90. Meyer L, Jayaram S, Cherney EA (2004) Thermal conductivity of filled silicone rubber and its relationship to erosion resistance in the inclined plane test. IEEE Trans Dielectr Electr Insul 11(4):620–630

    Article  Google Scholar 

  91. Meyer LH, Cherney EA, Jayaram SH (2004) The role of inorganic fillers in silicone rubber for outdoor insulation—alumina tri-hydrate or silica. IEEE Electr Insul Mag 20(4):13–21

    Article  Google Scholar 

  92. Chang RJ, Mazeika L (1996) Electrical activities associated with inclined-plane tracking and erosion test. CEIDP San Francisco 1996

    Google Scholar 

  93. Kärner H (1995) Research at braunschweig—studies of interfacial phenomena in composite insulators. Insul News Market Rep 3(3), May/June 1995, pp 9–11

    Google Scholar 

  94. Kindersberger J (2003) Stand und Tendenzen der Prüfung von Kunststoffen für Freiluftisolierungen HIGHVOLT Kolloquium, Mai 2003, Dresden, Beitrag 4.2, pp 121–131

    Google Scholar 

  95. Gorur RS, Cherney EA, Hackam R (1990) Polymer insulator profiles evaluated in a fog chamber. IEEE Trans Power Delivery 5(2):1078–1085

    Article  Google Scholar 

  96. Gorur RS, Bernstein BS (1998) Field and laboratory aging of polymeric. Distribution cable terminations: part 1-field aging. IEEE Trans Power Delivery 13(2):316–322

    Article  Google Scholar 

  97. Gorur RS, Bernstein BS (1998) Field and laboratory aging of polymeric cable terminations: part 2—laboratory aging. IEEE Trans Power Delivery 13(2):323–329

    Article  Google Scholar 

  98. Seifert J, Bärsch R (2007) Design evaluation of silicone rubber composite insulators under the aspect of surface pollution stress 15. In: International symposium on high voltage engineering, Ljubljana, Slovenia, Aug 2007

    Google Scholar 

  99. Seifert JM, Bärsch R, Vosloo WL (2008) Dimensioning of the housing profile of silicone rubber composite insulators for harsh marine pollution conditions. CIGRE Session 2008, Paris, Paper D1–303

    Google Scholar 

  100. Bärsch R (2009) Polymere lsolier- und Funktionswerkstoffe für Hochspannungsisolatoren und Kabelgarnituren—Beanspruchungen, anwendungsspezifische Eigenschaften und Prüfverfahren, RCC-Fachtagung “Werkstoffe- Forschung und Entwicklung neuer Technologien zur Anwendung in der elektrischen Energietechnik, Berlin Mai 2009, Tagungsband S. 1–54

    Google Scholar 

  101. Büchner H, Schmuck F, Zanetti A, Zingg A, Bärsch R, Jahn H (1996) Description of a complex test programme for the evaluation of outdoor aging relevant properties of silicone rubber, 7. In: IEE conference in bath

    Google Scholar 

  102. Büchner H, Schmuck F, Zanetti A, Bärsch R, Jahn H, Lambrecht J (1997) A comprehensive programme for the evaluation of essential material properties of silicone rubber for outdoor high voltage applications. Lokale CIGRE in Cairo 1997

    Google Scholar 

  103. Han DH, Cho HG, Han SW (2003) Effects of alumina trihydrate on the electrical insulation properties of HTV silicone rubber. In: Proceedings of the 7th international conference on properties and applications of dielectric materials, 1–5 June 2003

    Google Scholar 

  104. Schmuck F, Barsch R, Pilling J (1996) About an improved evaluation of results by the standardized salt-fog procedure for composite insulators. Eur Trans Electr Power 6:237–243

    Article  Google Scholar 

  105. Kumagai S, Yoshimura N (1999) Influences single and multiple environmental stresses on tracking and erosion of RTV silicone rubber. IEEE Trans Dielectr Electr Insul 6(2):211–225

    Article  Google Scholar 

  106. Ansorge S, Schmuck F, Aitken S, Papailiou KO (2010) Improved performance of silicone rubbers for the use in composite insulators. CIGRE 2010

    Google Scholar 

  107. Krivda A, Schmidt LE, Kornmann X, Ghorbani H, Ghorbandaeipour A, Eriksson M, Hillborg H (2009) Inclined-plane tracking and erosion test according to the IEC 60587 standard. IEEE Electri Insul Mag 25(6), Nov/Dec 2009

    Google Scholar 

  108. Seifert JM, Bärsch R, Vosloo WL (2008) Dimensioning of the housing profile of silicone rubber composite insulators for harsh marine pollution conditions. CIGRE Session 2008, Paper D1–303

    Google Scholar 

  109. Lambrecht J (2001) Über Verfahren zur Bewertung der Hydrophobieeigenschaften von Silikonelastomer-Formstoffen. Dissertation, TU Dresden 2001, Shaker Verlag ISBN 3-8265-9129-1

    Google Scholar 

  110. Barsch R, Jahn H, Lambrecht J, Schmuck F (1999) Test methods for polymeric insulating materials for outdoor HV insulation. IEEE Trans Dielectr Electr Insul 6(5):668–675

    Article  Google Scholar 

  111. Bärsch R, Lambrecht J, Winter H-J (1995) On the valuation of the early aging period of polymer insulator surfaces during accelerated aging tests. In: 9th ISH, proceedings, vol 3. Pollution Phenomena, Paper 3023, Graz

    Google Scholar 

  112. Bärsch R, Lambrecht J, Jahn H (1996) On the evaluation of the hydrophobicity of composite insulator surfaces. In: IEEE conference on electrical insulation and dielectric phenomena IEEE CEIDP 1996, San Francisco, pp 5A–19

    Google Scholar 

  113. Bärsch R, Lambrecht J, Winter HJ (1997) On the evaluation of influences on the hydrophobicity of silicon-rubber-surfaces. 10th ISH montreal (1997), proceedings, vol 3, pp 13–16

    Google Scholar 

  114. Kaltenborn U, Kindersberger J, Bärsch R, Jahn H (1997) On the electrical performance of different insulating materials in a rotating-wheel-dip-test. IEEE CEIDP Minneapolis Oktober 1997, paper 5A–1 0

    Google Scholar 

  115. Jahn H, Bärsch R, Kaltenborn U, Kindersberger J (1998) The evaluation of the early aging period of castings made of epoxy and PUR resins. IEEE CEIDP Atlanta, October 1998, paper 6B–7

    Google Scholar 

  116. IEC 61302 Ed. 1 (1995) Electrical insulating materials—method to evaluate the resistance to tracking and erosion, rotating wheel dip test

    Google Scholar 

  117. IEC 62730 TR Ed. 1 (2012) HV polymeric insulators for indoor and outdoor use—tracking and erosion testing by wheel test and 5,000 h test (expected for 2012)

    Google Scholar 

  118. ANSI C29.18 (2003) Insulators composite—distribution line post type

    Google Scholar 

  119. Bärsch R (2003) Bewertung der Hydrophobie sowie des Kriechstromverhaltens von Silikonelastomeren für Hochspannungs-Freiluftisolatoren. ETG-Fachbericht 93:97–108

    Google Scholar 

  120. Cervinka R, Bärsch R, Exl F, Kindersberger J, Winter H-J (2008) Untersuchungen zur Beständigkeit der Hydrophobie von polymeren Isolierstoffoberflächen und ihrer Wiederkehr mit dem Dynamischen Tropfen-Prüfverfahren ETG-Tagung

    Google Scholar 

  121. CIGRE WG D1.14 (2010) Evaluation of dynamic hydrophobicity properties of polymeric materials for non-ceramic outdoor insulation—retention and transfer of hydrophobicity. Technical Brochure 442, Dec 2010

    Google Scholar 

  122. IEC TS 62073 Ed. 1 (2003) Guidance on the measurement of wettability of insulator surfaces

    Google Scholar 

  123. KRUESS Messung des Kontaktwinkels (2011) Online-Dokumentation http://www.kruss.de/de/theorie/messungen/kontaktwinkel/messung-des-kontaktwinkels.html

  124. Kopczynska A (2008) Oberflächenspannungsphänomene bei Kunststoffen—Bestimmung und Anwendung. Diss. Technische Fakultät der Universität Erlangen-Nürnberg

    Google Scholar 

  125. Kindersberger J, Bärsch R (2005) Grenzfläche Feststoff-Gas—Beanspruchungen, Wechselwirkungen, Design, Prüfverfahren, Lebensdauer. Übersichtsvortrag der ETG-Fachtagung 2005 in Hanau, Deutschland

    Google Scholar 

  126. Jahn H (2003) Zur Bewertung stofflicher und herstellungsbedingter Einflussgrößen auf das Hydrophobie- und Erosionsverhalten von Silikonelastomeroberflächen. Dissertation, TU Dresden 2003, Shaker, ISBN 3-8322-1963-3

    Google Scholar 

  127. Liang X, Li CR, Ding L (2009) Study on the hydrophobicity of HTV SIR treated by different corona intensity. In: Power and energy engineering conference, APPEEC 2009. Asia-Pacific

    Google Scholar 

  128. Kim SH, Cherney EA, Hackam R (1990) The loss and recovery of hydrophobicity of RTV silicone rubber insulator coating. Trans Power Delivery 5(3):1491–1500

    Article  Google Scholar 

  129. Hackam R (1999) Outdoor HV composite polymeric insulators. IEEE Trans Dielectr Electr Insul 6(5):557–585

    Article  Google Scholar 

  130. Lee CL, Homan GR (1981) Silicone elastomer protective coatings for HV insulators. IEEE-CEIDP

    Google Scholar 

  131. Gorur RS, Cherney EA, Hackam R (1986) Factors influencing the performance of polymeric insulating materials in contaminated environments. IEEE-CEIDP

    Google Scholar 

  132. Gorur RS, Cherney EA, Hackam R, Orbeck T (1988) The electrical performance of polymeric insulating materials under accelerated aging in fog chamber. IEEE Trans Power Delivery, vol 3

    Google Scholar 

  133. Kim SH, Cherney EA, Hackam R (1992) Effects of filler level in RTV silicone rubber coatings used in HV insulators. IEEE Trans Electr Insul 27(6):1065–1072

    Article  Google Scholar 

  134. Kocher M (1993) Experience with silicone composite insulators in the tunnels of BLS Lötschberg. Railway Technology 1993

    Google Scholar 

  135. AI-Hamoudi IY (2008) Field test results of composite silicone rubber insulators at shoaiba of Saudi Arabia. In: GCC power 4th CIGRE conference 2008, Bahrain

    Google Scholar 

  136. Munteanu R (1994) Silicone rubber insulators life cycle costs. Transmission and Distribution, International 1994

    Google Scholar 

  137. Kindersberger J, Kuhl M (1989) Effect of hydrophobicity on insulator performance 6. ISH New Orleans 1989

    Google Scholar 

  138. Janssen H, Herden H, Kärner HC (1999) LMW components in silicone rubbers and epoxy resins 11. ISH London

    Google Scholar 

  139. Janssen H, Herden H, Kärner HC (1997) The loss and recovery of hydrophobicity on silicone rubber surfaces 10. ISH Montreal 1997

    Google Scholar 

  140. Winter HJ, Bärsch R (2006) Oberflächenverhalten von Siliconelastomeren unter feuchte und biogenen Belastungen. RCC-Fachtagung “Werkstoffe für Isolatoren, Überspannungsableiter, Kabelgarnituren, Schaltgeräte, Berlin 06.-07. April 2006, Tagungsband S. 49–58

    Google Scholar 

  141. Gubanski S (2008) Biological growth on non-ceramic insulators. CIGRE 2008 Paris, SC D1 Pref. Subject: 3, Question N°: 3.6

    Google Scholar 

  142. Dinesh MN, Vasudev N, Vasudevan Nambudri PV, Suryanarayana K, Ravi KN, Krishnan V (2008) Performance of composite insulators with and without bio contamination 2008. In: International conference on high voltage engineering and application, Chongqing, China, November 9–13, 2008

    Google Scholar 

  143. Papailiou KO, Peter M, Schmuck F (1999) SEFAG`s Silcosil—20 years of innovative solutions using silicone composite insulators for high voltage electrical systems. INMR World Insulator Congress 1999 Barcelona

    Google Scholar 

  144. Koshino Y, Umeda I, Ishiwari M (1998) Deterioration of silicone rubber for polymer insulators by corona discharge and effects of fillers. In: Annual report conference on electrical insulation and dielectric phenomena, vol 1 and 2

    Google Scholar 

  145. Schmuck F (2009) Status of test procedures for FRP cores of composite insulators. INMR Magazine 2009

    Google Scholar 

  146. Klöpel S (2002) Schallemissionsanalyse zur Untersuchung von Stahlbetontragwerken Institut für Baustatik und Konstruktion. ETH Zürich ISBN 3-7281-2837-6

    Google Scholar 

  147. Leistner M (2011) Onlinestudium Schallemissionsanalyse, www.mleistner.de

  148. Ju F, Xidong L, Yu Y, Chengsheng W, Ling C (2000) Application of acoustic emission technology on structure design and quality control of composite insulators. In: Proceedings of 6th ICPADM, June, 2000

    Google Scholar 

  149. Vallen Systeme (2008) Handbuch ASCO-P

    Google Scholar 

  150. IEC 61462 Ed. 1 (2007) Composite hollow insulators—Pressurized and unpressurized insulators for use in electrical equipment with rated voltage greater than 1,000 V—definitions, test methods, acceptance criteria and design recommendations

    Google Scholar 

  151. IEC 60068-2-17 Ed. 4 (1994) Basic environmental testing procedures—part 2-17, Tests–Test Q: Sealing

    Google Scholar 

  152. Schröder G (2001) Neue Norm zur Auswahl eines geeigneten Verfahrens zur Lecksuche und Dichtheitsprüfung. ZfP-Zeitung 74, Apr 2001

    Google Scholar 

  153. Franke H Lecksuchtechnik (2011) www.lecksuchtechnik.de

  154. Steinberger H (1997) Products and processing for high voltage applications. In: INMR symposium 1997, Miami

    Google Scholar 

  155. Schmid H (2011) Improved manufacturing methods for cable accessories and insulators. In: INMR symposium 2011

    Google Scholar 

  156. Technische Fakten—Silcosil© Silikonisolatoren (2007) PFISTERER SEFAG AG

    Google Scholar 

  157. Moal E, Fritsch M, Chevalier F, Rocchetti G, Pigini A (2011) 20 years experience with extruded HTV housings in EHV applications. INMR Symposium 2011, Seoul

    Google Scholar 

  158. Holmberg A (2011) Shed profile for hollow core composite insulators on HV apparatus. In: INMR symposium 2011, Seoul

    Google Scholar 

  159. Kanters AJLM (2008) Experience with composite insulators in 380 kV-substation Maasvlakte. CIGRE Paris, 2008, A3_Question 11

    Google Scholar 

  160. Vosloo W (2007) Experience and lessons learned from testing composite insulators in South Africa. In: INMR symposium 2007, Hong-Kong

    Google Scholar 

  161. Chrzan KL, Kindersberger J (2005) Pollution behaviour of insulators with spiral shaped sheds. ETG Fachtagung Grenzflächen in elektrischen Isoliersystemen 2005 in Hanau

    Google Scholar 

  162. Patent DE000019944513 C1 (1999) Verfahren zur Herstellung eines Hochspannungsisolators, sowie Vorrichtung zur Durchführung eines solchen Verfahrens. 16. 9. 1999

    Google Scholar 

  163. Patent EP000001415308 B1 (2001) Herstellung von Verbundisolatoren durch Anspritzen von Einzelschirmen an einen Strunk, 12 Oct 2001

    Google Scholar 

  164. Patent EP0774157 B1 (1995) Elektrischer Isolator aus Silikongummi für Hochspannungsanwendungen, 7July 1995

    Google Scholar 

  165. George J, Iqbal M, Papailiou KO, Huiber W, Schmuck F (2007) Dewa`s new 420 kV compact line as an example of maximizing capacity of overhead lines in an urban environment. GCC POWER 07 Dubai, UAE 2007

    Google Scholar 

  166. Körner G, Goldschmid T, Schulze M, Weiss J (1991) Silicone–chemistry and technology. Vulkan ESS. 1991, ISBN 3-8027-2161-6

    Google Scholar 

  167. LAPP: Rodurflex Produktbrochüre (2011)

    Google Scholar 

  168. MacLean Power Systems: P-S-T End Fitting Seal—Produktbroschüre (2011)

    Google Scholar 

  169. Hubbel: Quadri Sil—Produktbroschüre (2011)

    Google Scholar 

  170. Patent EP000002071592A1 (2007) Koronaschirm und Verbundisolator mit Koronaschirm

    Google Scholar 

  171. Phillips AJ, Childs DJ, Schneider HM (1999) Aging of non-ceramic insulators due to corona from water drops. IEEE Trans Power Delivery 14(3):1081–1089

    Article  Google Scholar 

  172. IEEE Taskforce on Electric Fields and Composite Insulators (2008) Electric fields on AC composite transmission line insulators. IEEE Trans Power Delivery 23(2):823–830

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Papailiou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papailiou, K., Schmuck, F. (2013). Material Selection and Manufacturing Processes for Composite Insulators with Silicone Rubber Housing. In: Silicone Composite Insulators. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15320-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15320-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15319-8

  • Online ISBN: 978-3-642-15320-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics