Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 316))

  • 578 Accesses

Abstract

When we look at the object in front of us, a specific pattern of activity is created in the ganglion cells of the retina. This pattern is relayed and transformed on its way via the thalamus and primary visual areas to higher cortical stages, where it may interact with and activate certain memories stored there. If this happens, we feel that we have recognized the object. While the recognition process as a whole is far from being understood, there is a wealth of details known about the individual anatomical subsystems involved in this process. Light entering the eye from the environment is focussed and projected by the lens as an inverted image onto the back of the eye. This concave surface is covered by the retina, the first outpost of the central nervous system (CNS) to be encountered by the light (see Figure 2.1a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, C.H., Van Essen, D.C.: Shifter circuits: A computational strategy for dynamic aspects of visual processing. Proceedings of the National Academy of Sciences of the United States of America 84, 6297–6301 (1987)

    Article  Google Scholar 

  • Arathorn, D.W.: Map-Seeking Circuits in Visual Cognition—A Computational Mechanism for Biological and Machine Vision. Stanford University Press, Stanford (2002)

    MATH  Google Scholar 

  • Bak, P.: How nature works: the science of self-organized criticality. Springer, Heidelberg (1996)

    Google Scholar 

  • Bar, M., Biederman, I.: Localizing the cortical region mediating visual awareness of object identity. PNAS 96, 1790–179 (1999)

    Google Scholar 

  • Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondence. In: Proc. CVPR, pp. 26–33 (2005)

    Google Scholar 

  • Biederman, I., Kalocsai, P.: Neurocomputational bases of object and face recognition. Phil. Trans. Roy. Soc. B 352, 1203–1219 (1997)

    Google Scholar 

  • Bosch, A., Zisserman, A., Muoz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans Pattern Anal Mach Intell (PAMI) 30, 712–727 (2008)

    Google Scholar 

  • Bundesen, C., Larsen, A.: Visual transformation of size. J. Exp. Psychol. Hum. Percept Perform 1(3), 214–220 (1975)

    Google Scholar 

  • Chater, N., Tenenbaum, J.B., Yuille, A.: Probabilistic models of cognition: Conceptual foundations. Trends in Cognitive Sciences 10(7), 287–291 (2006)

    Google Scholar 

  • Cox, D., Meier, P., Oertelt, N., DiCarlo, J.J.: Breaking position-invariant object recognition. Nature Neuroscience 8(9), 1145–1147 (2005)

    Google Scholar 

  • Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Proc. ECCV workshop on Statistical Learning in Computer Vision, pp. 59–74 (2004)

    Google Scholar 

  • Debruille, J.B., Guillem, F., Renault, B.: Erps and chronometry of face recognition: following-up seeck et al. and george et al. Neuroreport 9(15), 3349–3353 (1998)

    Google Scholar 

  • Deco, G., Rolls, E.T.: A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research 44(6), 621–642 (2004)

    Google Scholar 

  • Duhamel, J.R., Colby, C.L., Goldberg, M.E.: The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255(5040), 90–92 (1992)

    Google Scholar 

  • Fei-Fei, L., Fergus, R., Perona, P.: A bayesian approach to unsupervised one-shot learning of object categories. In: Proc. of the Ninth IEEE Intern. Conf. Computer Vision, pp. 1134–1141 (2003)

    Google Scholar 

  • Feldman, J.A.: Dynamic connections in neural networks. Biol. Cybern. 46(1), 27–39 (1982)

    Google Scholar 

  • Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  • Fiser, J., Biederman, I.: Invariance of long-term visual priming to scale, reflection, translation, and hemisphere. Vision Research 41, 221–234 (2001)

    Google Scholar 

  • Fukushima, K., Miyake, S., Ito, T.: Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man and Cybernetics 13(5), 826–834 (1983)

    Google Scholar 

  • Graf, M.: Coordinate transformations in object recognition. Psychol Bull 132, 920–945 (2006)

    Google Scholar 

  • Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences of the USA 86(5), 1698–1702 (1989)

    Google Scholar 

  • Greenberg, D.S., Houweling, A.R., Kerr, J.N.D.: Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature Neuroscience (2008), http://dx.doi.org/10.1038/nn.2140

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol (Lond.) 195, 215–243 (1968)

    Google Scholar 

  • Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Google Scholar 

  • Johnson, J.S., Olshausen, B.A.: Timecourse of neural signatures of object recognition. J. Vis. 3(7), 499–512 (2003), http://dx.doi.org/10:1167/3.7.4

    Google Scholar 

  • Jolicoeur, P.: The time to name disoriented natural objects. Mem. Cognit. 13(4), 289–303 (1985)

    Google Scholar 

  • Kandel, E.R., Jessell, T.M., Schwartz, J.: Principles of Neural Science, 4th edn. McGraw Hill, New York (2000)

    Google Scholar 

  • Kanizsa, G.: Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di Psicologia 49, 7–30 (1955)

    Google Scholar 

  • Konen, C.S., Kastner, S.: Two hierarchically organized neural systems for object information in human visual cortex. Nature Neuroscience 11(2), 224–231 (2008), http://dx.doi.org/10.1038/nn2036

    Google Scholar 

  • Kschischang, F.R., Frey, B.J., Loelinger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47, 498–519 (2001)

    Google Scholar 

  • Kusunoki, M., Goldberg, M.E.: The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J. Neurophysiol. 89(3), 1519–1527 (2003)

    Google Scholar 

  • Lamme, V.: Why visual attention and awareness are different. Trends in Cognitive Sciences 7(1), 12–18 (2003)

    Google Scholar 

  • Lawson, R., Jolicoeur, P.: The effect of prior experience on recognition thresholds for plane-disoriented pictures of familiar objects. Mem. Cognit. 27(4), 751–758 (1999)

    Google Scholar 

  • Lazebnik, S., Schmid, C., Ponce, J.: Affine-invariant local descriptors and neighborhood statistics for texture recognition. In: Proc. ICCV, pp. 649–655 (2003)

    Google Scholar 

  • Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc. CVPR 2006, vol. 2, pp. 2169–2178 (2006)

    Google Scholar 

  • LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Computation 1(4), 541–551 (1989)

    Google Scholar 

  • LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: CVPR, pp. 97–104. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  • Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision 43, 29–44 (2001)

    Google Scholar 

  • Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R.: Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 77(1), 24–42 (1997)

    Google Scholar 

  • Marr, D., Poggio, T.: Cooperative computation of stereo disparity. Science 194(4262), 283–287 (1976)

    Google Scholar 

  • Mel, B.W.: Seemore: Combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Computation 9, 777–804 (1997)

    Google Scholar 

  • Mel, B.W., Fiser, J.: Minimizing binding errors using learned conjunctive features. Neural Computation 12(4), 731–762 (2000)

    Google Scholar 

  • Murray, J.F., Kreutz-Delgado, K.: Visual recognition and inference using dynamic overcomplete sparse learning. Neural Computation 19(9), 2301–2352 (2007), http://dx.doi.org/10.1162/neco.2007.19.9.2301

  • Murray, S.O., Boyaci, H., Kersten, D.: The representation of perceived angular size in human primary visual cortex. Nature Neuroscience 9, 429–434 (2006)

    Google Scholar 

  • Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features in recognition. Prog Brain Res 155, 23–36 (2006) http://dx.doi.org/10.1016/S0079-6123(06)55002-2

    Google Scholar 

  • Olshausen, B.A., Anderson, C.H., van Essen, D.C.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience 13(11), 4700–4719 (1993)

    Google Scholar 

  • Oram, M.W., Perret, D.I.: Modeling visual recognition from neurobiological constraints. Neural Networks 7, 945–972 (1994)

    Google Scholar 

  • Pasupathy, A., Connor, C.E.: Responses to contour features in macaque area V4. J Neurophysiol. 82(5), 2490–2502 (1999)

    Google Scholar 

  • Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E., Bone, J.: Frvt, evaluation report, Technical Report 6965, NISTIR. (2003), http://www.frvt.org/

  • Pinto, N., Cox, D.D., Dicarlo, J.J.: Why is real-world visual object recognition hard? PLoS Computational Biology 4(1), e27+ (2008), http://dx.doi.org/10.1371/journal.pcbi.0040027

  • Pitts, W., McCulloch, W.S.: How we know universals: the perception of auditory and visual forms. Bulletin of Mathematical Biophysics 9, 127–147 (1947)

    Google Scholar 

  • Pollen, D., Lee, J., Taylor, J.: How does the striate cortex begin the reconstruction of the visual world? Science 173, 74–77 (1971)

    Google Scholar 

  • Postma, E., van den Herik, H., Hudson, P.: SCAN: A Scalable Model of Attentional Selection. Neural Netw. 10(6), 993–1015 (1997)

    Google Scholar 

  • Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1), 79–87 (1999)

    Google Scholar 

  • Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Google Scholar 

  • Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington (1961)

    Google Scholar 

  • Schiele, B., Crowley, J.: Recognition without correspondence using multidimensional receptive field histograms. International Journal of Computer Vision 36(1), 31–50 (2000)

    Google Scholar 

  • Schwartz, E.L.: Spatial mapping in primate sensory projection: analytic structure and relevance to perception. Biological Cybernetics 25, 181–194 (1977)

    Google Scholar 

  • Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach Intell. 29(3), 411–426 (2007) (Evaluation Studies)

    Google Scholar 

  • Singer, W.: Synchronization, binding and expectancy. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 1136–1143. MIT Press, Cambridge (2003)

    Google Scholar 

  • Sivic, J., Russell, B., Efros, A., Zisserman, A., Freeman, W.: Discovering objects and their location in images. In: Proc. ICCV 2005, pp. 370–377 (2005)

    Google Scholar 

  • Song, Y., Goncalves, L., Perona, P.: Unsupervised learning of human motion. PAMI 25(25), 1–14 (2003)

    Google Scholar 

  • Swain, M., Ballard, D.: Color indexing. International Journal of Computer Vision 7, 11–32 (1991)

    Google Scholar 

  • Tanaka, K.: Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996)

    Google Scholar 

  • Thorpe, S.: Identification of rapidly presented images by the human visual system. Perception 17, A77 (1988)

    Google Scholar 

  • Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996)

    Google Scholar 

  • Tootell, R.B., Silverman, M.S., Hamilton, S.L., Switkes, E., De Valois, R.L.: Functional anatomy of macaque striate cortex. V. Spatial frequency. J. Neurosci. 8, 1610–1624 (1988)

    Google Scholar 

  • Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition. In: Proc. ICCV 2003, pp. 273–280 (2003)

    Google Scholar 

  • van Vreeswijk, C., Sompolinsky, H.: Chaotic balanced state in a model of cortical circuits. Neural Computation 10, 1321–1372 (1998)

    Google Scholar 

  • von der Heydt, R., Peterhans, E., Baumgartner, G.: Illusory contours and cortical neuron responses. Science 224, 1260–1262 (1984)

    Google Scholar 

  • von der Malsburg, C.: The correlation theory of brain function, Internal report, 81-2, Max-Planck-Institut für Biophysikalische Chemie, Postfach 2841, 3400 Göttingen, FRG (1981); Reprinted in Domany, E., van Hemmen, J.L., Schulten, K. (eds.): Models of Neural Networks II, ch. 2, pp. 95–119. Springer, Berlin (1994)

    Google Scholar 

  • Wang, D.: The time dimension for scene analysis. IEEE Transactions on Neural Networks 16(6), 1401–1426 (2005)

    Google Scholar 

  • Wersing, H., Körner, E.: Learning optimized features for hierarchical models of invariant object recognition. Neural Computation 15(7), 1559–1588 (2003), http://dx.doi.org/10.1162/089976603321891800

    Google Scholar 

  • Wiskott, L., Fellous, J.-M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997), http://www.cnl.salk.edu/~wiskott/Abstracts/WisFelKrue97a.html

    Google Scholar 

  • Wiskott, L., von der Malsburg, C.: Face recognition by dynamic link matching. In: Sirosh, J., Miikkulainen, R., Choe, Y. (eds.) Lateral Interactions in the Cortex: Structure and Function, Austin, TX. Electronic book, vol. 11, The UTCS Neural Networks Research Group (1996), http://www.cs.utexas.edu/users/nn/web-pubs/htmlbook96/ , http://www.cnl.salk.edu/~wiskott/Abstracts/WisMal96c.html

  • Womelsdorf, T., Anton-Erxleben, K., Pieper, F., Treue, S.: Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nature Neuroscience 9(9), 1156–1160 (2006)

    Google Scholar 

  • Yuille, A., Kersten, D.: Vision as Bayesian inference: analysis by synthesis? Trends in Cognitive Sciences 10(7), 301–308 (2006)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolfrum, P. (2010). Background and Concepts. In: Information Routing, Correspondence Finding, and Object Recognition in the Brain. Studies in Computational Intelligence, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15254-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15254-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15253-5

  • Online ISBN: 978-3-642-15254-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics