Skip to main content

A Distributed Algorithm for the Multi-Robot Task Allocation Problem

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

In this work we address the Multi-Robot Task Allocation Problem (MRTA). We assume that the decision making environment is decentralized with as many decision makers (agents) as the robots in the system. To solve this problem, we developed a distributed version of the Hungarian Method for the assignment problem. The robots autonomously perform different substeps of the Hungarian algorithm on the base of the individual and the information received through the messages from the other robots in the system. It is assumed that each robot agent has an information regarding its distance from the targets in the environment. The inter-robot communication is performed over a connected dynamic communication network and the solution to the assignment problem is reached without any common coordinator or a shared memory of the system. The algorithm comes up with a global optimum solution in O(n 3) cumulative time (O(n 2) for each robot), with O(n 3) number of messages exchanged among the n robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arslan, G., Marden, J.R., Shamma, J.S.: Autonomous vehicle-target assignment: A game-theoretical formulation. Journal of Dynamic Systems, Measurement, and Control 129, 584–596 (2007)

    Article  Google Scholar 

  • Bertsekas, D.P.: Linear Network Optimization: Algorithms and Codes. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  • Bertsekas, D.P.: Auction algorithms for network flow problems: A tutorial introduction. Computational Optimization and Applications 1(1) (1992)

    Google Scholar 

  • Bertsekas, D.P., Castanon, D.A., Eckstein, J., Zenios, S.: Parallel computing in network optimization. In: Network Models - Handbooks in Operations Research and Management Science, vol. 7, pp. 330–399. Elsevier, Amsterdam (1995)

    Google Scholar 

  • Burkard, R.E., Çela, E.: Linear assignment problems and extensions. Handbook of Combinatorial Optimization 4(1), 221–300 (1999)

    Google Scholar 

  • Gerkey, B.P., Mataric, M.J.: A framework for studying multi-robot task allocation. In: Shultz, A.C., et al. (eds.) Multi-Robot Systems: From Swarms to Intelligent Automata, The Netherlands, vol. 2, pp. 15–26. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  • Gerkey, B.P., Mataric, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research 23(9), 939–954 (2004)

    Article  Google Scholar 

  • Giordani, S., Lujak, M., Martinelli, F.: A Decentralized Scheduling Policy for a Dynamically Reconfigurable Production System. In: Mařík, V., Strasser, T., Zoitl, A. (eds.) Holonic and Multi-Agent Systems for Manufacturing. LNCS (LNAI), vol. 5696, pp. 102–113. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  • Kuhn, H.W.: The Hungarian Method for the Assignment Problem. Naval Research Logistics Quarterly 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  • Kwok, K.S., Driessen, B.J., Phillips, C.A., Tovey, C.A.: Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms. Journal of Intelligent and Robotic Systems 35(1), 111–122 (2002)

    Article  MATH  Google Scholar 

  • Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, and Winston (1976)

    Google Scholar 

  • Lueth, T.C., Laengle, T.: Task description, decomposition and allocation in a distributed autonomous multi-agent robot system. In: IEEE/RSJ IROS, pp. 1516–1523 (1994)

    Google Scholar 

  • Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., Englewood Cliffs (1982)

    MATH  Google Scholar 

  • Smith, S.L., Bullo, F.: Target assignment for robotic networks: Asymptotic performance under limited communication. In: American Control Conference, ACC’07, pp. 1155–1160 (2007)

    Google Scholar 

  • Sugar, T., Kumar, V.: Control and Coordination of Multiple Mobile Robots in Manipulation and Material Handling Tasks. In: The Sixth International Symposium on Experimental Robotics, vol. VI, pp. 15–24. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Wooldridge, M.: Introduction to Multi-Agent Systems. John Wiley and Sons, Chichester (2002)

    Google Scholar 

  • Zavlanos, M.M., Spesivtsev, L., Pappas, G.J.: A distributed auction algorithm for the assignment problem. In: Proc. of 47th IEEE Conf. on Decision and Control, Cancun, Mexico, pp. 1212–1217 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giordani, S., Lujak, M., Martinelli, F. (2010). A Distributed Algorithm for the Multi-Robot Task Allocation Problem. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13022-9_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13022-9_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13021-2

  • Online ISBN: 978-3-642-13022-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics