Skip to main content

Imaging in Immunology Research

  • Chapter
Small Animal Imaging

Abstract

The immune system is central to health and tools to measure its dynamic function are critically needed in research and clinical settings. Molecular imaging modalities such as optical imaging, positron emission tomography (PET), computed tomography, and magnetic resonance imaging enable noninvasive longitudinal studies of immune function throughout the body. In vivo molecular imaging studies in small animals have revealed patterns of immune cell localization, trafficking, and function that cannot be obtained using conventional immune monitoring methods. This chapter reviews applications of optical imaging and PET in the study of immune trafficking and function, models of disease, and cancer immunotherapies with an assessment of the challenges facing the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Azim H et al (2008) Expansion of multipotent and lymphoid-committed human progenitors through intracellular dimerization of Mpl. Blood 111:4064–4074

    Article  PubMed  CAS  Google Scholar 

  • Adonai N et al (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A 99:3030–3035

    Article  PubMed  CAS  Google Scholar 

  • Alauddin MM et al (2007) In vivo evaluation of 2′-deoxy-2′-[(18)F]fluoro-5-iodo-1-beta-D: -arabinofuranosyluracil ([(18)F]FIAU) and 2′-deoxy-2′-[ (18)F]fluoro-5-ethyl-1-beta-D: -arabinofuranosyluracil ([ (18)F]FEAU) as markers for suicide gene expression. Eur J Nucl Med Mol Imaging 34:822–829

    Article  PubMed  Google Scholar 

  • Balaban EP, Simon TR, Sheehan RG, Frenkel EP (1986) Effect of the radiolabel mediator tropolone on lymphocyte structure and function. J Lab Clin Med 107:306–314

    PubMed  CAS  Google Scholar 

  • Balaban EP, Simon TR, Frenkel EP (1987) Toxicity of indium-111 on the radiolabeled lymphocyte. J Nucl Med 28:229–233

    PubMed  CAS  Google Scholar 

  • Balzarini J et al (2006) Engineering of a single conserved amino acid residue of herpes simplex virus type 1 thymidine kinase allows a predominant shift from pyrimidine to purine nucleoside phosphorylation. J Biol Chem 281:19273–19279

    Article  PubMed  CAS  Google Scholar 

  • Beilhack A et al (2005) In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood 106:1113–1122

    Article  PubMed  CAS  Google Scholar 

  • Biron CA (1997) Activation and function of natural killer cell responses during viral infections. Curr Opin Immunol 9:24–34

    Article  PubMed  CAS  Google Scholar 

  • Black ME, Newcomb TG, Wilson H-MP, Loeb LA (1996) Creation of drug-specific hepes simplex virus type 1 thymidine kinase mutant for gene therapy. Proc Natl Acad Sci U S A 93:3525–3529

    Article  PubMed  CAS  Google Scholar 

  • Botti C et al (1997) Comparison of three different methods for radiolabelling human activated T lymphocytes. Eur J Nucl Med Mol Imaging 24:497–504

    CAS  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  • Brewer S et al (2008) Molecular imaging of murine intestinal inflammation with 2-deoxy-2-[18F]fluoro-D-glucose and positron emission tomography. Gastroenterology 135:744–755

    Article  PubMed  Google Scholar 

  • Buursma AR et al (2006) 18F-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression: in-vitro comparison with other PET tracers. Nucl Med Commun 27:25–30

    Article  PubMed  CAS  Google Scholar 

  • Catana C et al (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47:1968–1976

    PubMed  Google Scholar 

  • Clay TM, Hobeika AC, Mosca PJ, Lyerly HK, Morse MA (2001) Assays for monitoring cellular immune responses to active immunotherapy of cancer. Clin Cancer Res 7:1127–1135

    PubMed  CAS  Google Scholar 

  • Costa GL et al (2001) Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 167:2379–2387

    PubMed  CAS  Google Scholar 

  • Crabtree GR (1999) Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 96:611–614

    Article  PubMed  CAS  Google Scholar 

  • Cramer T et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    Article  PubMed  CAS  Google Scholar 

  • Denis MC, Mahmood U, Benoist C, Mathis D, Weissleder R (2004) Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc Natl Acad Sci U S A 101:12634–12639

    Article  PubMed  CAS  Google Scholar 

  • Dubey P et al (2003) Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci U S A 100:1232–1237

    Article  PubMed  CAS  Google Scholar 

  • Frauwirth KA et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–777

    Article  PubMed  CAS  Google Scholar 

  • Gallaher SD, Gil JS, Dorigo O, Berk AJ (2009) Robust in vivo transduction of a genetically stable Epstein-Barr virus episome to hepatocytes in mice by a hybrid viral vector. J Virol 83:3249–3257

    Article  PubMed  CAS  Google Scholar 

  • Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Gambhir SS et al (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 97:2785–2790

    Article  PubMed  CAS  Google Scholar 

  • Goertzen AL, Suk JY, Thompson CJ (2007) Imaging of weak-source distributions in LSO-based small-animal PET scanners. J Nucl Med 48:1692–1698

    Article  PubMed  Google Scholar 

  • Green LA et al (2004) A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. J Nucl Med 45:1560–1570

    PubMed  CAS  Google Scholar 

  • Hediger MA et al (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch 447:465–468

    Article  PubMed  CAS  Google Scholar 

  • Huang SC et al (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82

    PubMed  CAS  Google Scholar 

  • Hwang LN, Yu Z, Palmer DC, Restifo NP (2006) The in vivo expansion rate of properly stimulated transferred CD8+ T cells exceeds that of an aggressively growing mouse tumor. Cancer Res 66:1132–1138

    Article  PubMed  CAS  Google Scholar 

  • Ilagan R et al (2006) Imaging mitogen-activated protein kinase function in xenograft models of prostate cancer. Cancer Res 66:10778–10785

    Article  PubMed  CAS  Google Scholar 

  • Iyer M et al (2005) Non-invasive imaging of a transgenic mouse model using a prostate-specific two-step transcriptional amplification strategy. Transgenic Res 14:47–55

    Article  PubMed  CAS  Google Scholar 

  • Johnson M et al (2005) Micro-PET/CT monitoring of herpes thymidine kinase suicide gene therapy in a prostate cancer xenograft: the advantage of a cell-specific transcriptional targeting approach. Mol Imaging 4:463–472

    PubMed  Google Scholar 

  • Johnson LA et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  PubMed  CAS  Google Scholar 

  • Judenhofer MS et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  PubMed  CAS  Google Scholar 

  • Koehne G et al (2003) Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21:405–413

    Article  PubMed  CAS  Google Scholar 

  • Kohn DB, Sadelain M, Glorioso JC (2003) Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 3:477–488

    Article  PubMed  CAS  Google Scholar 

  • Lee GR, Fields PE, Griffin TJ, Flavell RA (2003) Regulation of the Th2 cytokine locus by a locus control region. Immunity 19:145–153

    Article  PubMed  CAS  Google Scholar 

  • Levin CS (2008) New imaging technologies to enhance the molecular sensitivity of positron emission tomography. Proc IEEE 96:439–467

    Article  CAS  Google Scholar 

  • Liang Q et al (2002a) Monitoring adenoviral DNA delivery, using a mutant herpes simplex virus type 1 thymidine kinase gene as a PET reporter gene. Gene Ther 9:1659–1666

    Article  PubMed  CAS  Google Scholar 

  • Liang Q et al (2002b) Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther 6:73–82

    Article  PubMed  CAS  Google Scholar 

  • Likar Y et al (2009) PET imaging of HSV1-tk mutants with acquired specificity toward pyrimidine- and acycloguanosine-based radiotracers. Eur J Nucl Med Mol Imaging 36:1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  PubMed  CAS  Google Scholar 

  • Luker GD et al (2002) Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci U S A 99:6961–6966

    Article  PubMed  CAS  Google Scholar 

  • Mankoff DA et al (1998) Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 39:1043–1055

    PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  PubMed  CAS  Google Scholar 

  • Matsui K, Wang Z, McCarthy TJ, Allen PM, Reichert DE (2004) Quantitation and visualization of tumor-specific T cells in the secondary lymphoid organs during and after tumor elimination by PET. Nucl Med Biol 31:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Matsui T et al (2009) Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis. J Nucl Med 50:920–926

    Article  PubMed  CAS  Google Scholar 

  • Milan G et al (1999) Dissecting the immune response to moloney murine sarcoma/leukemia virus-induced tumors by means of a DNA vaccination approach. J Virol 73:2280–2287

    PubMed  CAS  Google Scholar 

  • Mohrs M, Shinkai K, Mohrs K, Locksley RM (2001) Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15:303–311

    Article  PubMed  CAS  Google Scholar 

  • Murali-Krishna K et al (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8:177–187

    Article  PubMed  CAS  Google Scholar 

  • Murphy KP, Travers P, Walport M, Janeway C (2008) Janeway’s immunobiology. Garland Science, New York

    Google Scholar 

  • Muruve DA (2004) The innate immune response to adenovirus vectors. Hum Gene Ther 15:1157–1166

    Article  PubMed  CAS  Google Scholar 

  • Nair-Gill et al (2010) PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice. 120(6):2005–2015

    Article  PubMed  CAS  Google Scholar 

  • Negrin RS, Contag CH (2006) In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 6:484–490

    Article  PubMed  CAS  Google Scholar 

  • Nishimura R et al (2008) In vivo trafficking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity. Blood 112:2563–2574

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  PubMed  CAS  Google Scholar 

  • Overwijk WW et al (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198:569–580

    Article  PubMed  CAS  Google Scholar 

  • Paik JY, Lee KH, Byun SS, Choe YS, Kim BT (2002) Use of insulin to improve [18 F]fluorodeoxyglucose labelling and retention for in vivo positron emission tomography imaging of monocyte trafficking. Nucl Med Commun 23:551–557

    Article  PubMed  CAS  Google Scholar 

  • Paulmurugan R, Gambhir SS (2006) An intramolecular folding sensor for imaging estrogen receptor-ligand interactions. Proc Natl Acad Sci U S A 103:15883–15888

    Article  PubMed  CAS  Google Scholar 

  • Paulmurugan R, Gambhir SS (2007) Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein-protein interactions. Anal Chem 79:2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A et al (2001) Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol Ther 3:319–322

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681

    PubMed  CAS  Google Scholar 

  • Phelps ME (2004) PET: molecular imaging and its biological applications. Springe, New York

    Google Scholar 

  • Pittet MJ et al (2007) In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci U S A 104:12457–12461

    Article  PubMed  CAS  Google Scholar 

  • Ponomarev V et al (2001) Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3:480–488

    Article  PubMed  CAS  Google Scholar 

  • Ponomarev V et al (2007) A human-derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. J Nucl Med 48:819–826

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich BA et al (2008) Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc Natl Acad Sci U S A 105:14342–14346

    Article  PubMed  CAS  Google Scholar 

  • Radu CG, Shu CJ, Shelly SM, Phelps ME, Witte ON (2007) Positron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 104:1937–1942

    Article  PubMed  CAS  Google Scholar 

  • Radu CG et al (2008) Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2′-deoxycytidine analog. Nat Med 14:783–788

    Article  PubMed  CAS  Google Scholar 

  • Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    Article  PubMed  CAS  Google Scholar 

  • Ray P et al (2002) Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci U S A 99:3105–3110

    Article  PubMed  CAS  Google Scholar 

  • Ray P, De A, Min JJ, Tsien RY, Gambhir SS (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64:1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Rettig GR, Rice KG (2007) Non-viral gene delivery: from the needle to the nucleus. Expert Opin Biol Ther 7:799–808

    Article  PubMed  CAS  Google Scholar 

  • Ridolfi R et al (2004) Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med 2:27

    Article  PubMed  Google Scholar 

  • Santos EB et al (2009) Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat Med 15:338–344

    Article  PubMed  CAS  Google Scholar 

  • Sato M et al (2005) Functionality of androgen receptor-based gene expression imaging in hormone refractory prostate cancer. Clin Cancer Res 11:3743–3749

    Article  PubMed  CAS  Google Scholar 

  • Schepers K et al (2002) Differential kinetics of antigen-specific CD4+ and CD8+ T cell responses in the regression of retrovirus-induced sarcomas. J Immunol 169:3191–3199

    PubMed  CAS  Google Scholar 

  • Serganova I et al (2004) Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64:6101–6108

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  • Shu CJ et al (2005) Visualization of a primary anti-tumor immune response by positron emission tomography. Proc Natl Acad Sci U S A 102:17412–17417

    Article  PubMed  CAS  Google Scholar 

  • Shu CJ et al (2009) Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 21:155–165

    Article  PubMed  CAS  Google Scholar 

  • Snapp EL (2009) Fluorescent proteins: a cell biologist’s user guide. Trends Cell Biol 19:649–655

    Article  PubMed  CAS  Google Scholar 

  • Stelljes M et al (2008) Clinical molecular imaging in intestinal graft-versus-host disease: mapping of disease activity, prediction, and monitoring of treatment efficiency by positron emission tomography. Blood 111:2909–2918

    Article  PubMed  CAS  Google Scholar 

  • Su H, Forbes A, Gambhir SS, Braun J (2004) Quantitation of cell number by a positron emission tomography reporter gene strategy. Mol Imaging Biol 6:139–148

    Article  PubMed  Google Scholar 

  • Su H, Chang DS, Gambhir SS, Braun J (2006) Monitoring the antitumor response of naive and memory CD8 T cells in RAG1−/− mice by positron-emission tomography. J Immunol 176:4459–4467

    PubMed  CAS  Google Scholar 

  • Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Krohn KA (2004) Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technol Ther 6:652–659

    Article  PubMed  Google Scholar 

  • Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11:435–443

    Article  PubMed  CAS  Google Scholar 

  • Tseng JC et al (2006) Tumor-specific in vivo transfection with HSV-1 thymidine kinase gene using a Sindbis viral vector as a basis for prodrug ganciclovir activation and PET. J Nucl Med 47:1136–1143

    PubMed  CAS  Google Scholar 

  • Vivier E, Tomasello E, Paul P (2002) Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol 14:306–311

    Article  PubMed  CAS  Google Scholar 

  • Wang X et al (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102:3478–3482

    Article  PubMed  CAS  Google Scholar 

  • Wei LH et al (2008) Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J Nucl Med 49:1828–1835

    Article  PubMed  CAS  Google Scholar 

  • Woodland RT et al (2008) Multiple signaling pathways promote B lymphocyte stimulator dependent B-cell growth and survival. Blood 111:750–760

    Article  PubMed  CAS  Google Scholar 

  • Xiong Z et al (2006) Imaging chemically modified adenovirus for targeting tumors expressing integrin alphavbeta3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. J Nucl Med 47:130–139

    PubMed  CAS  Google Scholar 

  • Yaghoubi SS, Creusot RJ, Ray P, Fathman CG, Gambhir SS (2007) Multimodality imaging of T-cell hybridoma trafficking in collagen-induced arthritic mice: image-based estimation of the number of cells accumulating in mouse paws. J Biomed Opt 12:064025

    Article  PubMed  Google Scholar 

  • Yang TT, Sinai P, Kitts PA, Kain SR (1997) Quantification of gene expression with a secreted alkaline phosphatase reporter system. Biotechniques 23:1110–1114

    PubMed  CAS  Google Scholar 

  • Yang L et al (2008) Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol 26:326–334

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Yin L, Tan Y, Yuan Z, Jiang H (2008) Quantitative bioluminescence tomography guided by diffuse optical tomography. Opt Express 16:1481–1486

    Article  PubMed  Google Scholar 

  • Zhu Z, Zheng T, Lee CG, Homer RJ, Elias JA (2002) Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol 13:121–128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge all colleagues who contributed to the work presented here. We acknowledge Andrew Tran for helping with figure preparation and Barbara Anderson for helping with manuscript preparation. JTL is supported by the In Vivo Cellular and Molecular Imaging Centers (ICMIC) Developmental Project Award NIH 5 P50 CA86306. ENG is supported by US National Institutes of Health T32 GM08042 UCLA Medical Scientist Training Program and Interdisciplinary Training in Virology and Gene Therapy T32 A1065067. CGR is supported by National Cancer Institute Grant No. 5U54 CA119347, ICMIC Developmental Project Award NIH P50 CA86306, the CIRM Tools and Technology Grant and the Dana Foundation. ONW is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen N. Witte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, J.T., Nair-Gill, E.D., Rabinovich, B.A., Radu, C.G., Witte, O.N. (2011). Imaging in Immunology Research. In: Kiessling, F., Pichler, B. (eds) Small Animal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12945-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12945-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12944-5

  • Online ISBN: 978-3-642-12945-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics