Skip to main content

A Role for Molecular Studies in Unveiling the Pathways for Formation of Rotifer Resting Eggs and Their Survival During Dormancy

  • Chapter
  • First Online:
Dormancy and Resistance in Harsh Environments

Part of the book series: Topics in Current Genetics ((TCG,volume 21))

Abstract

Rotifers are minute aquatic invertebrates inhabiting mainly continental waters with environmental conditions restricting their long-term survival. Formation of dormant forms, diapausing embryos (resting eggs), is a strategy that facilitates their genetic pool survival beyond unfavorable environmental conditions. Resting eggs are formed during the sexual reproductive cycle. Usually, rotifers display cyclic parthenogenesis, with asexually reproducing females (known as amictic females) forming diploid eggs (called amictic eggs) that are responsible for fast population growth. Specific environmental cues known as mixis induce sexual reproduction. Recent studies implicate crowding as the inducing signal for onset of sexual reproduction in brachionid monogonont rotifers. Sexual reproduction starts with the commencement of meiosis leading to the formation of haploid males and followed by the formation of diploid resting eggs. Rotifer resting eggs differ structurally from asexual or amictic eggs and can remain dormant for decades. Following hatching a new cycle of asexual reproduction ensues, leading to population growth and colonization of the specific environmental niche. In some cases, however, sexual reproduction may occur shortly after hatching. Very few molecular studies were performed on monogonont rotifers so far and most were limited to single gene studies. Large scale expressed sequence tags resources were formed recently for the rotifer Brachionus plicatilis. They are providing important platforms for molecular analyses on the events leading to the formation of males, resting eggs and on dormancy in this species. Genes known to be associated with desiccation tolerance during dormancy in other organisms (e.g., yeast spores, Artemia cysts, and seed plants) were also identified in resting eggs, even though they do not necessarily fully desiccate during the dormant period. Future studies should be directed to investigate the regulation of processes associated with the entrance and exit from dormancy, in this important metazoan model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balompapueng MD, Hagiwara A, Nozaki Y, Hirayama K (1997) Preservation of resting eggs of the euryhaline rotifer Brachionus plicatilis O.F. Müller by canning. Hydrobiologia 358:163–166

    Article  Google Scholar 

  • Balthus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC (2006) In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 38:1430–1434

    Article  CAS  Google Scholar 

  • Bentsink L, Koornneef M (2008) Seed dormancy and germination. In: The arabidopsis book. American Society of Plant Biologists, Rockville, MD, pp 1–18. doi:10.1199/tab.0119

    Google Scholar 

  • Berjak B (2006) Unifying perspectives of some mechanisms basic to desiccation tolerance across life forms. Seed Sci Res 16:1–15

    Article  CAS  Google Scholar 

  • Bethke A, Fielenbach N, Wang Z, Mangelsdorf DJ, Antebi A (2009) Nuclear hormone receptor regulation of microRNAs control development progression. Science 324:95–98

    Article  PubMed  CAS  Google Scholar 

  • Birky CW, Bignami RZ, Bentfield MJ (1967) Nuclear and cytoplasmic DNA synthesis in adult and embryonic rotifers. Biol Bull 133:502–509

    Article  PubMed  Google Scholar 

  • Bowles J, Koopman P (2007) Retinoic acid, meiosis and germ cell fate in mammals. Development 134:3401–3411

    Article  PubMed  CAS  Google Scholar 

  • Bowles J, Knight D, Smith C, Wilhelm D, Richman JM, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Sex-specific regulation of retinoidc acid levels in developing mouse gonads determine germ cell fate. Science 312:596–600

    Article  PubMed  CAS  Google Scholar 

  • Buchner H, Mutschler C, Kiechle H (1967) Die Determination der Männchen-und Dauereiproduktion bei Asplnchna sieboldi. Biologische Zentral 86:599–621

    Google Scholar 

  • Butcher RA, Ragains JR, Li W, Ruvkun G, Clardy J, Mak HY (2009) Biosynthesis of the Caenorhabditis elegans dauer pheromone. Proc Natl Acad Sci USA 106:1875–1879

    Article  PubMed  CAS  Google Scholar 

  • Cadman CS, Torop PE, Hilhorst HW, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    Article  PubMed  CAS  Google Scholar 

  • Caprioli M, Katholm AK, Melone G, Ramlov H, Ricci C, Santo N (2004) Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comp Biochem Physiol A Mol Integr Physiol 139:527–532

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Gomez A, Serra M (1995) Mictic patterns of the rotifer Brachionus plicatilis Müller in small ponds. Hydrobiologia 313(314):365–371

    Article  Google Scholar 

  • Chen T, Amons R, Clegg JS, Warner AH, MacRae TH (2003) Molecular characterization of artemin and ferritin from Artemia franciscana. Eur J Biochem 270:856–867

    Google Scholar 

  • Chen WH, Ge X, Wang W, Yu J, Hu S (2009) A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana. BMC Genomics 10:52

    Article  PubMed  CAS  Google Scholar 

  • Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282:699–705

    Article  PubMed  CAS  Google Scholar 

  • Ciros-Perez J, Gomez A, Serra M (2001) On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. J Plankton Res 23:311–1328

    Article  Google Scholar 

  • Clegg JS (2001) Cryptobiosis – a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 128:613–624

    Article  PubMed  CAS  Google Scholar 

  • Denekamp NY, Thorne MAS, Clark MS, Kube M, Reinhardt R, Lubzens E (2009) Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10:108

    Article  PubMed  CAS  Google Scholar 

  • Fielenbach N, Antebi A (2009) C. elegans dauer formation and the molecular basis of plascticity. Genes Dev 22:2149–2165

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Cadman CS, Toorop PE, Lynn JR, Hilhorst HW (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78

    Article  PubMed  CAS  Google Scholar 

  • Fontaneto D, Hernlou AE, Boschetti C, Caprioli M, Melone G, Ricci C, Barraclough TG (2007) Independently evolving species in asexual bdelloid rotifers. PLoS Biol 4:e87

    Article  CAS  Google Scholar 

  • Fu Y, Hirayama K, Natsukari Y (1991a) Morphological differences between two types of the rotifer Brachionus plicatilis O.F. Muller. J Exp Mar Biol Ecol 151:29–41

    Article  Google Scholar 

  • Fu Y, Hirayama K, Natsukari Y (1991b) Genetic divergence between S and L type strains of the rotifer Brachionus plicatilis O.F. Muller. J Exp Mar Biol Ecol 151:43–56

    Article  Google Scholar 

  • Fukusho K, Iwamoto H (1981) Polymorphosis in size of rotifer, Brachionus plicatilis, cultured with various feeds. Bull Natl Res Inst Aquac 2:1–10

    Google Scholar 

  • Gallardo WG, Hagiwara A, Tomita Y, Soyano K, Snell TW (1997) Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production, and body size of the marine rotifer Brachionus plicatilis Mueller. Hydrobiologia 358:113–120

    Article  CAS  Google Scholar 

  • Gallardo WG, Hagiwara A, Tomita Y, Snell TW (1999) Effect of growth hormone and gamma -aminobutyric acid on Brachionus plicatilis (Rotifera) reproduction at low food or high ammonia levels. J Exp Mar Biol Ecol 240:179–191

    Article  CAS  Google Scholar 

  • Gallardo WG, Hagiwara A, Snell TW (2000) Effect of juvenile hormone and serotonin (5-HT) on mixis induction of the rotifer Brachionus plicatilis Muller. J Exp Mar Biol Ecol 252:97–107

    Article  PubMed  CAS  Google Scholar 

  • Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A (2007) A bile-like steroid modulates C. elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci USA 104:5014–5019

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JJ (1974) Dormancy of rotifers. Trans Am Microsc Soc 93:490–513

    Article  Google Scholar 

  • Gilbert JJ (1989) Rorifera. In: Adiyodi KG, Adiyodi RG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 5, Sexual differentiation and behaviour. Oxford & IBH Publishing, New Delhi, pp 115–136

    Google Scholar 

  • Gilbert JJ (2004a) Population density, sexual reproduction and diapause in monogonont rotifers: new data for Brachionus and a review. J Limnol 63:32–36

    Article  Google Scholar 

  • Gilbert JJ (2004b) Females from resting eggs and parthogenetic eggs in the rotifer Brachionus calyciflorus: lipi droplets, starvation resistance and reproduction. Freshw Biol 49:1505–1515

    Article  Google Scholar 

  • Gilbert JJ (2007a) Timing of diapause in monogonont rotifers: mechanisms and strategies. In: Alekseev VR, De Stasio B, Gilbert JJ (eds) Diapause in aquatic invertebrates: theory and human use. Springer, Dordrecht, pp 11–27

    Chapter  Google Scholar 

  • Gilbert JJ (2007b) Induction of mictic females in the rotifer Brachionus: oocytes of mictic females respond individually to population-density signal only during oogenesis shortly before oviposition. Freshw Biol 52:1417–1426

    Article  Google Scholar 

  • Gilbert JJ, Schröder T (2004) Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnol Oceanogr 49:1341–1354

    Article  Google Scholar 

  • Gilbert JJ, Schröder T (2007) Intraclonal variation in propensity for mixis in several rotifers: variation among females and maternal age. Hydrobiologia 593:121–128

    Article  Google Scholar 

  • Gilbert JJ, Thompson GA Jr (1968) Alpha tocopherol control of sexuality and polymorphism in the rotifer Asplanchna. Science 159:734–736

    Article  PubMed  CAS  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  PubMed  CAS  Google Scholar 

  • Giribert G, Distel DL, Plz M, Sterrer W, Wheeler WC (2000) Triploblastic relationships with emphasis on the acoelomates and the position of Gnathosmolulida Cycliophora, platyhelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst Zool 49:539–562

    Google Scholar 

  • Gómez A (2005) Molecular ecology of rotifers: from population differentiation to speciation. Hydrobiologia 546:83–99

    Article  CAS  Google Scholar 

  • Gómez A, Serra M (1996) Mate choice in male Brachionus plicatilis rotifers. Funct Ecol 10:681–687

    Article  Google Scholar 

  • Hagiwara A (1996) Use of resting eggs for mass preservation of marine rotifers. Technical Reports of Japanese Sea Ranching Programs, 24:109–120. (In Japanese)

    Google Scholar 

  • Hagiwara A, Hino A (1989) Effect of incubation and preservation on resting egg hatching and mixis in the derived clones of the rotifer Brachionus plicatilis. Hydrobiologia 186(187):415–421

    Article  Google Scholar 

  • Hagiwara A, Hino A (1990) Feeding history and hatching of resting eggs in the marine rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 56:1965–1971

    Article  Google Scholar 

  • Hagiwara A, Hino A, Hirano R (1988a) Comparison of resting egg formation among five Japanese stocks of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 54:577–580

    Article  Google Scholar 

  • Hagiwara A, Hino A, Hirano R (1988b) Effects of temperature and chlorinity on resting egg formation in the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 54:569–575

    Article  CAS  Google Scholar 

  • Hagiwara A, Lee C-S, Miyamoto G, Hino A (1989) Resting egg formation and hatching of the S-type rotifer Brachionus plicatilis at varying salinities. Mar Biol 103:327–332

    Article  Google Scholar 

  • Hagiwara A, Hamada K, Hori S, Hirayama K (1994) Increased sexual reproduction in Brachionus plicatilis (Rotifera) with the addition of bacterial and rotifer extracts. J Exp Mar Biol Ecol 181:1–8

    Article  Google Scholar 

  • Hagiwara A, Hoshi N, Kawahara F, Tominaga K, Hirayama K (1995a) Resting eggs of the marine rotifer Brachionus plicatilis Muller: development and effect of irradiation on hatching. Hydrobiologia 313(314):223–229

    Article  Google Scholar 

  • Hagiwara A, Kotani T, Snell TW, Assava-Aree M, Hirayama K (1995b) Morphology, reproduction, genetics, and mating behavior of small, tropical marine Brachionus strains (Rotifera). J Exp Mar Biol Ecol 194:25–37

    Article  Google Scholar 

  • Hagiwara A, Gallardo WG, Assavaaree M, Kotani T, de Araujo AB (2001) Live food production in Japan: recent progress and future aspects. Aquaculture 200:111–127

    Article  Google Scholar 

  • Hagiwara A, Kadota Y, Hino A (2005) Maternal effect by stem females in Brachionus plicatilis: effect of starvation on mixis induction in offspring. Hydrobiologia 546:275–279

    Article  Google Scholar 

  • Hagiwara A, Suga K, Akazawa A, Kotani T, Sakakura Y (2007) Development of rotifer strains with useful traits for rearing fish larvae. Aquaculture 268:44–52

    Article  Google Scholar 

  • Hino A, Hirano R (1977) Ecological studies on the mechanism of bisexual reproduction in the rotifer Brachionus plicatilis. II Effects of cumulative parthenogenetic generation on the frequency of bisexual reproduction. Nippon Suisan Gakkaishi 43:1147–1155

    Article  Google Scholar 

  • Hino A, Hirano R (1984) Relation between water temperature and bisexual reproduction rate in the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 50:1481–1485

    Article  Google Scholar 

  • Hino A, Hirano R (1985) Relation between the temperature given at the time of fertilized egg formation and bisexual reproduction pattern in the deriving strains of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 51:511–514

    Article  Google Scholar 

  • Hino A, Hirano R (1988) Relationship between water chlorinity and bisexual reproduction rate in the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 54:1329–1332

    Article  CAS  Google Scholar 

  • Hirata H (1980) Culture methods of the marine rotifer Brachionus plicatilis. Min Rev Data File Res 1:27–46

    Google Scholar 

  • Holdsworth MJ, Soppe WS, Bentsink L (2008a) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. Invited Tansley Review. New Phytol 179:33–54

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008b) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13

    Article  PubMed  CAS  Google Scholar 

  • Ito T (1960) On the culture of mixohaline rotifer Brachionus plicatilis O.F. Muller in the sea water. Rep Fac Fish Pref Univ Mie 3:708–740, in Japanese with English abstract

    Google Scholar 

  • Jeong P-Y, Kwon M-S, Joo H-J, Paik Y-J (2009) Molecular time-course and metabolic basis of entry in dauer in C. elegans. PLoS One 4:e4162

    Article  PubMed  CAS  Google Scholar 

  • Joseph-Strauss D, Zenvirth D, Simchen G, Barkai N (2007) Spore germination in Saccharomyces cerevisiae: global gene expression patterns and cell cycle landmarks. Genome Biol 8:R241

    Article  PubMed  CAS  Google Scholar 

  • Kaneko G, Kinoshita S, Yoshinaga T, Tsukamoto K, Watabe S (2002) Changes in expression pattern in stress protein genes during population growth of the rotifer Brachionus plicatilis. Fish Sci 68:1317–1323

    Article  CAS  Google Scholar 

  • Kaneko G, Yoshinaga T, Yanagawa Y, Kinoshita S, Tsukamoto K, Watabe S (2005) Molecular characterization of Mn-superoxide dismutase and gene expression studies in dietary restricted Brachionus plicatilis rotifers. Hydrobiologia 546:117–123

    Article  CAS  Google Scholar 

  • Kaneko G, Yoshinaga T, Tsukamoto K, Watabe S (2006) Insulin/IGF pathway possibly regulates population dynamics of rotifer. Growth Horm IGF Res 16:S41

    Article  Google Scholar 

  • Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B 150:149–191

    Article  PubMed  CAS  Google Scholar 

  • Kotani T, Ozaki M, Matsuoka K, Snell TW, Hagiwara A (2001) Reproductive isolation among geographically and temporally isolated marine Brachionus strains. Hydrobiologia 446–447:283–290

    Article  Google Scholar 

  • Kranner I, Birtić S (2005) A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740

    Article  PubMed  CAS  Google Scholar 

  • Kubanek J, Snell TW (2008) Quorum sensing in rotifers. In: Winans SC, Bassler BL (eds) Chemical communication among bacteria. ASM Press, Washington DC, pp 453–461

    Google Scholar 

  • Liberek K, Lewandowska A, Zietkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27:328–355

    Article  PubMed  CAS  Google Scholar 

  • Lubzens E (1981) Rotifer resting eggs and their application to marine aquaculture. Spec Publ Eur Maricult Soc 6:163–179

    Google Scholar 

  • Lubzens E (1987) Raising rotifers for use in aquaculture. Hydrobiologia 147:245–255

    Article  CAS  Google Scholar 

  • Lubzens E (1989) Possible use of rotifer resting eggs and preserved live rotifers (Brachionus plicatilis) in aquaculture. In: De Pauw N, Jaspers E, Ackefors H, Wilkins N (eds) Aquaculture – a biotechnology in progress. European Aquaculture, Bredene, pp 741–750

    Google Scholar 

  • Lubzens E, Minkoff G (1988) Influence of the age of algae fed to rotifers (Brachionus plicatilis O. F. Muller) on the expression of mixis in their progenies. Oecologia 76:430–435

    Article  Google Scholar 

  • Lubzens E, Zmora O (2003) Production and nutritional values of rotifers. In: Støttrup JG, McEvoy LA (eds) Live foods in marine aquaculture. Blackwell, Oxford, UK, pp 17–64

    Chapter  Google Scholar 

  • Lubzens E, Minkoff G, Marom S (1985) Salinity dependence of sexual and asexual reproduction in the rotifer Brachionus plicatilis. Mar Biol 85:123–126

    Article  Google Scholar 

  • Mark Welch DB (2001) Early contributions of phylogenetics to understanding the evolution of Rotifera. Hydrobiologia 446(447):315–322

    Article  Google Scholar 

  • Mark Welch DB (2005) Bayesian and maximum likelihood analysis of rotifer–acanthocephalan relationships. Hydrobiologia 546:47–54

    Article  CAS  Google Scholar 

  • Mark Welch DB, Mark Welch JL (2005) Genomic approaches to rotifer ecology. Hydrobiologia 546:101–108

    Article  CAS  Google Scholar 

  • Mark Welch DB, Meselson M (2001) A survey of introns in three genes of rotifers. Hydrobiologia 446(447):333–336

    Article  Google Scholar 

  • Mark Welch DB, Cummings MP, Hillis DM, Meselson M (2004) Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families. Proc Natl Acad Sci USA 101:1622–1625

    Article  PubMed  CAS  Google Scholar 

  • Mark Welch DB, Mark Welch JL, Melselson M (2008) Evidence for degenerate tetraploidy in bdelloid rotifers. Proc Natl Acad Sci USA 105:5145–5149

    Article  PubMed  Google Scholar 

  • Minkoff G, Lubzens E, Kahan D (1983) Environmental factors affecting hatching of rotifer (Brachionus plicatilis) resting eggs. Hydrobiologia 104:61–69

    Article  Google Scholar 

  • Morin P Jr, Duboc A, Storey KB (2008) Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor. Biochem Biophys Acta 1779:628–633

    Article  PubMed  CAS  Google Scholar 

  • Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ (2006) Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124:1209–1223

    Article  PubMed  CAS  Google Scholar 

  • Mtwisha L, Brandt W, McCready S, Lindsey GG (1998) HSP 12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol Biol 37:513–521

    Article  PubMed  CAS  Google Scholar 

  • Munuswamy N, Hagiwara A, Murugan G, Hirayama K, Dumont HJ (1996) Structural differences between the resting eggs of Brachionus plicatilis and Brachionus rotundiformis (Rotifera, Brachionidae): an electron microscopic study. Hydrobiologia 318:219–223

    Article  Google Scholar 

  • Örstan A (1998) Factors affecting long-term survival of dry bdelloid rotifers: a preliminary study. Hydrobiologia 387(388):327–331

    Article  Google Scholar 

  • Philippi T, Segers J (1989) Hedging one’s evolutionary bets, revisited. Trends Ecol Evol 4:41–44

    Article  PubMed  CAS  Google Scholar 

  • Pouchkina-Stantcheva NN, McGee BM, Boschetti C, Tolleter D, Chakrabortee S, Popova AV, Meersman F, Macherel D, Hincha DK, Tunnacliffe A (2007) Functional divergence of former alleles in an ancient asexual invertebrate. Science 318:268–271

    Article  PubMed  CAS  Google Scholar 

  • Qiu Z, Bossier P, Wang X, Bojkova-Fournier S, MacRae TH (2006) Diversity, structure, and expression of the gene for p26, a small heat shock protein from Artemia. Genomics 88:230–240

    Article  PubMed  CAS  Google Scholar 

  • Qiu Z, Tsoi SCM, MacRae TH (2007) Gene expression in diapause-destined embryos of the crustacean Artemia francisacana. Mech Dev 124:856–867

    Article  PubMed  CAS  Google Scholar 

  • Raz V, Bergervoet JHW, Koorneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252

    PubMed  CAS  Google Scholar 

  • Ricci C (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia 387(388):321–326

    Article  Google Scholar 

  • Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologica 446(447):1–11

    Article  Google Scholar 

  • Ricci C, Caprioli M (2005) Anhydrobiosis in bdelloid species, population and individuals. Integr Comp Biol 45:759–763

    Article  PubMed  Google Scholar 

  • Rumengan IFM, Kayano H, Hirayam K (1991) Karyotypes of S-type and L-type rotifers Brachionus plicatilis Muller, O.F. J Exp Mar Biol Ecol 154:171–176

    Article  Google Scholar 

  • Ruttner-Kolisko A (1974) Plankton rotifers: biology and taxonomy. Die Binnengewasser 26(Suppl 1):1–146

    Google Scholar 

  • Schackwitz WS, Inoue T, Thomas JH (1996) Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron 17:719–728

    Article  PubMed  CAS  Google Scholar 

  • Schröder T (2005) Diapause in monogonont rotifers. Hydrobiologia 546:291–306

    Article  Google Scholar 

  • Schröder T, Gilbert JJ (2004) Transgenerational plasticity for sexual reproduction and diapause in the life cycle of monogonont rotifers: intraclonal, intraspecific and interspecific variation in the response to crowding. Funct Ecol 18:458–466

    Article  Google Scholar 

  • Schurko AM, Logsdon M Jr (2008) Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. Bioessays 30:579–589

    Article  PubMed  CAS  Google Scholar 

  • Schurko AM, Logsdon JM Jr, Eads BD (2009) Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol Biol 9:78

    Article  PubMed  CAS  Google Scholar 

  • Segers H (1995) Nomenclature consequences of some recent studies on Brachionus plicatilis (Rotifera, Brachionidae). Hydrobiologia 313:121–122

    Article  Google Scholar 

  • Segers H (2007) Annotated checklist of the rotifers (Phylum Rotifera) with notes on nomenclature, taxonomy and distribution. Zootaxa 1564:1–104

    Google Scholar 

  • Segers J, Brockmann JH (1987) What is bet-hedging? Oxf Surv Evol Biol 4:182–211

    Google Scholar 

  • Serra M, King C (1999) Optimal rates of bisexual reproduction in cyclical parthenogens with density-dependent growth. J Evol Biol 12:263–271

    Article  Google Scholar 

  • Serra M, Gomez A, Carmona MJ (1998) Ecological genetics of Brachionus. Hydrobiologia 387(388):373–384

    Article  Google Scholar 

  • Serra M, Snell TW, Gilbert JJ (2005) Delayed mixis in rotifers: an adaptive response to the effects of density-dependent sex on population growth. J Plankton Res 27:37–45

    Article  Google Scholar 

  • Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT (2007) The C. elegans TGF-β dauer pathway regulates longevity via insulin signaling. Curr Biol 17:1635–1645

    Article  PubMed  CAS  Google Scholar 

  • Shearer TL, Snell TW (2007) Transfection of siRNA into Brachionus plicatilis (Rotifera). Hydrobiologia 593:141–150

    Article  CAS  Google Scholar 

  • Smith CA, Roeszler KN, Bowles J, Koopman P, Sinclair AH (2008) Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev Biol 8:85

    Article  PubMed  CAS  Google Scholar 

  • Snell TW (1986) Effect of temperature, salinity and food level on sexual and asexual reproduction in Brachionus plicatilis (Rotifera). Mar Biol 92:157–162

    Article  Google Scholar 

  • Snell TW, Childress M (1987) The effect of age on male and female fertility in the rotifer Brachionus plicatilis. J Invertebr Reprod Dev 12:103–110

    Article  Google Scholar 

  • Snell TW, DesRosiers NJD (2008) Effect of progesterone on sexual reproduction of Brachionus manjavacas. J Exp Mar Biol Ecol 363:104–109

    Article  CAS  Google Scholar 

  • Snell TW, Hoff FH (1988) Recent advances in rotifer culture. Aquacult Mag 9(10):41–45

    Google Scholar 

  • Snell TW, Kubanek J, Carter W, Oayne AB, Kim J, Hicks MK, Stelzer C-P (2006) A protein signal truggers sexual reproduction in Brachionus plicatilis (Rotifera). Mar Biol 149:763–773

    Article  CAS  Google Scholar 

  • Stelzer C-P, Snell TW (2006) Specificity of the crowding response in the Brachionus plicatilis species complex. Limnol Oceanog 5:125–130

    Article  Google Scholar 

  • Storey KB (2003) Mammalian hibernation. Transcriptional and translational controls. Adv Exp Med Biol 543:21–38

    Article  PubMed  CAS  Google Scholar 

  • Suatoni E, Vicario S, Rice S, Snell T, Caccone A (2006) An analysis of species boundaries and biogeographical patterns in a cryptic species complex: the rotifer Brachionus plicatilis. Mol Phylogenet Evol 41:86–98

    Article  PubMed  CAS  Google Scholar 

  • Suga K, Mark Welch DB, Tanaka Y, Sakakura Y, Hagiwara A (2007a) Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLoS One 2:e671

    Article  PubMed  CAS  Google Scholar 

  • Suga K, Tanaka Y, Sakakura Y, Hagiwara A (2007b) Inheritance of mitochondrial DNA in the rotifer Brachionus plicatilis. Hydrobiologia 593:167–173

    Article  CAS  Google Scholar 

  • Suga K, Welch DB, Tanaka M, Sakakura Y, Hagiwara A (2008) Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. Mol Biol Evol 25:1129–1137

    Article  PubMed  CAS  Google Scholar 

  • Tunnacliffe A, Lapinski J (2003) Resurrecting Van Leeuwenhoek’s rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Philos Trans R Soc Lond B Biol Sci 358:1755–1771

    Article  PubMed  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The contuing conundrum of the LEA proteins. Naturwissenschaftten 94:791–812

    Article  CAS  Google Scholar 

  • Tunnacliffe A, Lapinski J, McGree B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546:315–321

    Article  CAS  Google Scholar 

  • Van der Linden A, Blust R, Decleir W (1985) The influence of light on the hatching of Artemia cysts (Anostraca: Branchiopoda: Crustacea). J Exp Mar Biol Ecol 92:207–214

    Article  Google Scholar 

  • Van der Linden A, Vankerckhoven I, Caubergs R, Decleir W (1986) Action spectroscopy of light-induced hatching of Artemia cysts (Branchiopoda: Crustacea). Mar Biol 91:239–243

    Article  Google Scholar 

  • Wallace RL (2002) Rotifers: exquite metazoan. Integr Comp Biol 42:660–667

    Article  PubMed  Google Scholar 

  • Wallace RL, Snell TW (1991) Rotifera. In: Thorp JH, Covish AP (eds) Ecology and classification of North American freshwater invertebrates. Academic Press, Inc., New York, pp 187–248

    Google Scholar 

  • Wallace RL, Snell TW, Ricci C, Nogrady T (2006) Rotifera. In: Segerss H (ed) Biology, ecology and systematics, vol 1, 2nd edn, Guides to the identification of the microinvertebrates of the continental waters of the world 23. Backhuys Publishers, Leiden

    Google Scholar 

  • Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130:1621–1634

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Kitajima C, Fujita S (1983) Nutritional values of the live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34:115–143

    Article  CAS  Google Scholar 

  • Wheelock CE, Wolfe MF, Olsen H, Tjeerdema RS, Sowby ML (1999) HSP60-induced tolerance in the rotifer Brachionus plicatilis exposed to multiple environmental contaminants. Arch Environ Contam Toxicol 36:281–287

    Article  PubMed  CAS  Google Scholar 

  • Wurdak E, Gilbert JJ, Jagels R (1977) Resting egg ultrastructure and formation of the shell in Asplanchna sieboldi and Brachionus calyciflorus. Arch Hydrobiol Beih 8:298–302

    Google Scholar 

  • Wurdak ES, Gilbert JJ, Jagels R (1978) Fine structure of the resting eggs of the rotifers Brachionus calyciflorus and Asplanchna sieboldi. Trans Am Microsc Soc 97:49–72

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Usuki K, Yoshimatsu T, Kitajima C (1996) Culture technology of marine rotifers and implication for intensive culture of marine fish in Japana. Mar Freshw Res 47:217–222

    Article  CAS  Google Scholar 

  • Yoshinaga T, Kaneko G, Kinoshita S, Tsukamoto K, Watabe S (2003) The molecular mechanisms of life history alterations in a rotifer: a novel approach in population dynamics. Comp Biochem Physiol (B) 136:715–722

    Article  CAS  Google Scholar 

  • Yoshinaga T, Kaneko G, Kinoshita S, Furukawa S, Tsukamoto K, Watabe S (2005) Insulin-like signaling pathway involved in regulating longevity of the rotifer. Hydrobiologia 546:347–352

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The studies of NYD and EL in this review were financially supported by the European Commission (NEST #012674; Sleeping Beauty). We would like to thank anonymous reviewers for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Lubzens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Denekamp, N.Y., Suga, K., Hagiwara, A., Reinhardt, R., Lubzens, E. (2010). A Role for Molecular Studies in Unveiling the Pathways for Formation of Rotifer Resting Eggs and Their Survival During Dormancy. In: Lubzens, E., Cerda, J., Clark, M. (eds) Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12422-8_7

Download citation

Publish with us

Policies and ethics