Skip to main content

Parallel Multi-Objective Approaches for Inferring Phylogenies

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2010)

Abstract

The inference of the phylogenetic tree that best express the evolutionary relationships concerning data is one of the central problem of bioinformatics. Several single optimality criterion have been proposed for the phylogenetic reconstruction problem. However, different criteria may lead to conflicting phylogenies. In this scenario, a multi-objective approach can be useful since it could produce a set of optimal trees according to multiple criteria. PhyloMOEA is a multi objective evolutionary approach applied to phylogenetic inference using maximum parsimony and maximum likelihood criteria. On the other hand, the computational power required for phylogenetic inference of large alignments easily surpasses the capabilities of single machines. In this context, the parallelization of the heuristic reconstruction methods can not only help to reduce the inference execution time but also improve the results quality and search robustness. On the other hand, The PhyloMOEA parallelization represents the next development step in order to reduce the execution time. In this paper, we present the PhyloMOEA parallel version developed using the ParadisEO framework. The experiments conducted show significant speedup in the execution time for the employed datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2004)

    Google Scholar 

  2. Stamatakis, A.: Raxml-vi-hpc: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

    Article  Google Scholar 

  3. Lewis, P.O.: A Genetic Algorithm for Maximum-Likelihood Phylogeny Inference Using Nucleotide Sequence Data. Molecular Biology and Evolution 15(3), 277–283 (1998)

    Google Scholar 

  4. Zwickl, D.: Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD thesis, Faculty of the Graduate School. University of Texas (2006)

    Google Scholar 

  5. Huelsenbeck, J.: Performance of Phylogenetic Methods in Simulation. Systematic Biology 44, 17–48 (1995)

    Google Scholar 

  6. Tateno, Y., Takezaki, N., Nei, M.: Relative Efficiences of the Maximum-Likelihood, Neighbor-Joining, and Maximum Parsimony Methods when Substitution Rate Varies with Site. Molecular Biology and Evolution 11, 261–267 (1994)

    Google Scholar 

  7. Cancino, W., Delbem, A.: Multi-criterion phylogenetic inference using evolutionary algorithms. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, CIBCB 2007, pp. 351–358 (2007)

    Google Scholar 

  8. Fitch, W.: Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Systematic Zoology 20(4), 406–416 (1972)

    Article  Google Scholar 

  9. Felsenstein, J.: Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. Journal of Molecular Evolution 17, 368–376 (1981)

    Article  Google Scholar 

  10. Talbi, E.: Metaheuristics: from design to implementation. Wiley, Chichester (2009)

    MATH  Google Scholar 

  11. Bader, D., Roshan, U., Stamatakis, A.: Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions. Advances in Computers 68, 128 (2006)

    Google Scholar 

  12. Cahon, S., Melab, N., Talbi, E.: Paradiseo: a framework for the flexible design of parallel and distributed hybrid metaheuristics. Journal of Heuristics 10, 357–380 (2004)

    Article  Google Scholar 

  13. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  14. Rokas, A., Wiliams, B., King, N., Carroll, S.: Genome-Scale Approaches to Resolving Incongrounce in Molecular Phylogenies. Nature 425(23), 798–804 (2003)

    Article  Google Scholar 

  15. Poladian, L., Jermiin, L.: Multi-Objective Evolutionary Algorithms and Phylogenetic Inference with Multiple Data Sets. Soft. Computing 10(4), 359–368 (2006)

    Article  Google Scholar 

  16. Jayaswal, V., Poladian, L., Jermiin, L.: Single- and multi-objective phylogenetic analysis of primate evolution using a genetic algorithm. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 4146–4153 (2007)

    Google Scholar 

  17. Vinh, L., von Haeseler, A.: Iqpnni: Moving fast through tree space and stopping in time. Molecular Biology and Evolution 21(8), 1565–1571 (2004)

    Article  Google Scholar 

  18. Minh, B., Vinh, L., von Haeseler, A., Schmidt, H.: pIQPNNI: parallel reconstruction of large maximum likelihood phylogenies. Bioinformatics 21(19), 3794–3796 (2005)

    Article  Google Scholar 

  19. Brauer, M.J., Holder, M.T., Dries, L.A., Zwickl, D.J., Lewis, P.O., Hillis, D.M.: Genetic algorithms and parallel processing in maximum-likelihood phylogeny inference. Molecular Biology and Evolution 19(10), 1717–1726 (2002)

    Google Scholar 

  20. Stamatakis, A., Ott, M.: Exploiting Fine-Grained Parallelism in the Phylogenetic Likelihood Function with MPI, Pthreads, and OpenMP: A Performance Study. In: Chetty, M., Ngom, A., Ahmad, S. (eds.) PRIB 2008. LNCS (LNBI), vol. 5265, pp. 424–435. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Pratas, F., Trancoso, P., Stamatakis, A., Sousa, L.: Fine-grain Parallelism using Multi-core, Cell/BE, and GPU Systems: Accelerating the Phylogenetic Likelihood Function. In: 38th International Conference on Parallel Processing (2009) (accepted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cancino, W., Jourdan, L., Talbi, EG., Delbem, A.C.B. (2010). Parallel Multi-Objective Approaches for Inferring Phylogenies. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2010. Lecture Notes in Computer Science, vol 6023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12211-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12211-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12210-1

  • Online ISBN: 978-3-642-12211-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics