Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5944))

Abstract

Interpolant-based model checking is an approximate method for computing invariants of transition systems. The performance of the model checker is contingent on the approximation computed, which in turn depends on the logical strength of the interpolants. A good approximation is coarse enough to enable rapid convergence but strong enough to be contained within the weakest inductive invariant. We present a system for constructing propositional interpolants of different strength from a resolution refutation. This system subsumes existing methods and allows interpolation systems to be ordered by the logical strength of the obtained interpolants. Interpolants of different strength can also be obtained by transforming a resolution proof. We analyse an existing proof transformation, generalise it, and characterise the interpolants obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.B.: Resolution with merging. Journal of the ACM 15(3), 367–381 (1968)

    Article  MATH  Google Scholar 

  2. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time reductions of resolution proofs. Technical Report IE/IS-2008-02, Technion (2008)

    Google Scholar 

  3. Buss, S.R.: Propositional proof complexity: An introduction. In: Berger, U., Schwichtenberg, H. (eds.) Computational Logic. NATO ASI Series F: Computer and Systems Sciences, vol. 165, pp. 127–178. Springer, Heidelberg (1999)

    Google Scholar 

  4. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. Journal of Symbolic Logic 22(3), 250–268 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  5. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. Technical Report 652, Institute for Computer Science, ETH Zurich (November 2009)

    Google Scholar 

  6. Huang, G.: Constructing Craig interpolation formulas. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  7. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. Logical Methods in Computer Science (LMCS) 3(4) (2007)

    Google Scholar 

  8. Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. The Journal of Symbolic Logic 62(2), 457–486 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Maehara, S.: On the interpolation theorem of Craig (in Japanese). Sûgaku 12, 235–237 (1961)

    MathSciNet  Google Scholar 

  10. Mancosu, P.: Interpolations. Essays in Honor of William Craig. Synthese, vol. 164:3. Springer, Heidelberg (2008)

    Google Scholar 

  11. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Google Scholar 

  12. McMillan, K.L.: An interpolating theorem prover. Theoretical Comput. Sci. 345(1), 101–121 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. The Journal of Symbolic Logic 62(3), 981–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G. (2010). Interpolant Strength. In: Barthe, G., Hermenegildo, M. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2010. Lecture Notes in Computer Science, vol 5944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11319-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11319-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11318-5

  • Online ISBN: 978-3-642-11319-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics