Skip to main content

Data Modelling for Analysis of Adaptive Changes in Fly Photoreceptors

  • Conference paper
Neural Information Processing (ICONIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5863))

Included in the following conference series:

Abstract

Adaptation is a hallmark of sensory processing. We studied neural adaptation in intracellular voltage responses of the R1-R6 photoreceptors, of the fruit fly Drosophila, subjected to light patterns of naturalistic distribution at varying intensity levels. We use experimental data in a stepwise empirical modelling procedure to estimate a non-linear dynamical model (NARMAX) with variable gain. This model can describe accurately the observed adaptation process at each new level of changing light inputs. Generalized frequency response functions were used to visualize and quantify adaptation in the frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, H.B.: Possible principles underlying the transformation of sensory messages. MIT Press, Cambridge (1961)

    Google Scholar 

  2. Zheng, L., Nikolaev, A., Wardill, T.J., O’Kane, C.J., de Polavieja, G.G., Juusola, M.: Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: I dynamics. PLoS ONE 4, e4307 (2009)

    Google Scholar 

  3. van Hateren, J.: A theory of maximizing sensory information. Biol. Cybern. 68(1), 23–29 (1992)

    Article  MATH  Google Scholar 

  4. Wark, B., Lundstrom, B.N., Fairhall, A.: Sensory adaptation. Sensory systems 17(4), 423–429 (2007)

    Google Scholar 

  5. Van Hateren, J.: Processing of natural time series of intensities by the visual system of the blowfly. VIS. RES. 37(23), 3407–3416 (1997)

    Article  Google Scholar 

  6. Marmarelis, P.Z., Naka, K.I.: White-noise analysis of a neuron chain: An application of the wiener theory. Science 175, 1276–1278 (1972)

    Article  Google Scholar 

  7. McCann, G.D.: Nonlinear identification theory models for successive stages of visual nervous systems of flies. Journal of Neurophysiology 37, 869–895 (1974)

    Google Scholar 

  8. Eckert, H., Bishop, L.: Nonlinear dynamic transfer characteristics of cells in the peripheral visual pathway of flies. part i: The retinula cells. Biological Cybernetics 17(1), 1–6 (1975)

    Article  Google Scholar 

  9. Marmarelis, V., McCann, G.: A family of quasi white random signals and its optimal use in biological system identification. part ii: Application to the photoreceptor of calliphora erythrocephala. Biological Cybernetics 27(1), 57–62 (1977)

    Article  Google Scholar 

  10. Victor, J., Shapley, R., Knight, B.: Nonlinear analysis of cat retinal ganglion cells in the frequency domain. Proc. Natl. Acad. Sci. U.S.A. 74(7), 3068–3072 (1977)

    Article  Google Scholar 

  11. Victor, J.: Nonlinear systems analysis: comparison of white noise and sum of sinusoids in a biological system. Proc. Natl. Acad. Sci. U.S.A. 76(2), 996–998 (1979)

    Article  MathSciNet  Google Scholar 

  12. Juusola, M., Kouvalainen, E., Jarvilehto, M., Weckstrom, M.: Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors. Journal of General Physiology 104(3), 593–621 (1994)

    Article  Google Scholar 

  13. Van Hateren, J.H., Snippe, H.P.: Information theoretical evaluation of parametric models of gain control in blowfly photoreceptor cells. Vision Research 41(14), 1851–1865 (2001)

    Article  Google Scholar 

  14. Marmarelis, V.: Nonlinear Dynamic Modeling of Physiological Systems. Wiley Interscience, Hoboken (2004)

    Google Scholar 

  15. Korenberg, M., Hunter, I.: The identification of nonlinear biological systems: Volterra kernel approaches. Ann. Biomed. Eng. 24(2), 250–268 (1996)

    Article  Google Scholar 

  16. Borst, A.: Drosophila’s view on insect vision. Current Biology 19(1) (2009)

    Google Scholar 

  17. Juusola, M., Hardie, R.C.: Light adaptation in drosophila photoreceptors: I. response dynamics and signaling efficiency at 25°c. Journal of General Physiology 117, 3–25 (2001)

    Article  Google Scholar 

  18. Ljung, L.: System Identification - Theory for the User, 2nd edn. Prentice Hall, Linköping University, Sweden (1999)

    Google Scholar 

  19. Juusola, M., de Polavieja, G.G.: The rate of information transfer of naturalistic stimulation by graded potentials. J. Gen. Physiol. 122(2), 191–206 (2003)

    Article  Google Scholar 

  20. Mocks, J., Gasser, T., Tuan, P.: Variability of single visual evoked potentials evaluated by two new statistical tests. Electroencephalogr. Clin. Neurophysiol 57(6), 571–580 (1984)

    Article  Google Scholar 

  21. Billings, S., Leontaritis, I.: Identification of nonlinear systems using parameter estimation techniques, vol. 194, pp. 183–187. IEE Conference Publication, Warwick University (1981)

    Google Scholar 

  22. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for non-linear systems. part i: Deterministic non-linear systems; part ii: Stochastic nonlinear systems. International Journal of Control 41(2), 303–344 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pearson, R.K.: Discrete-Time Dynamic Models. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  24. Wei, H., Billings, S., Liu, J.: Term and variable selection for non-linear system identification. International Journal of Control 77(1), 86–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chen, S., Billings, S.A., Luo, W.: Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control 50(5), 1873–1896 (1989); Cited By (since 1996): 238

    Article  MATH  MathSciNet  Google Scholar 

  26. Akaike, H.: Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics 21(1), 243–247 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  27. Billings, S.A., Zhu, Q.M.: Nonlinear model validation using correlation tests. International Journal of Control 60(6), 1107–1120 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Diaz, H.: Modeling of nonlinear discrete-time systems from input-output data. Automatica 24(5), 629–641 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Volterra, V.: Theory of functionals and of integral and integro-differential equations. Blackie, London (1930)

    Google Scholar 

  30. Billings, S.A., Tsang, K.M.: Spectral analysis for non-linear systems, part ii: Interpretation of non-linear frequency response functions. Mechanical Systems and Signal Processing 3(4), 341–359 (1989)

    Article  MATH  Google Scholar 

  31. Peyton-Jones, J.C., Billings, S.A.: Recursive algorithm for computing the frequency response of a class of non-linear difference equation models. International Journal of Control 50(5), 1925–1940 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gu, Y., Oberwinkler, J., Postma, M., Hardie, R.C.: Mechanisms of light adaptation in drosophila photoreceptors. Current Biology 15(13), 1228–1234 (2005)

    Article  Google Scholar 

  33. Zheng, L., De Polavieja, G., Wolfram, V., Asyali, M., Hardie, R., Juusola, M.: Feedback network controls photoreceptor output at the layer of first visual synapses in drosophila. Journal of General Physiology 127(5), 495–510 (2006)

    Article  Google Scholar 

  34. Chow, T., Hong-Zhou, T., Yong, F.: Nonlinear systems representation. In: Encyclopedia of Electrical and Electronics Engineering. Wiley, Chichester (2001)

    Google Scholar 

  35. Zhao, X., Marmarelis, V.: Nonlinear parametric models from volterra kernels measurements. Math. Comput. Model. 27(5), 37–43 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friederich, U., Coca, D., Billings, S., Juusola, M. (2009). Data Modelling for Analysis of Adaptive Changes in Fly Photoreceptors. In: Leung, C.S., Lee, M., Chan, J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, vol 5863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10677-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10677-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10676-7

  • Online ISBN: 978-3-642-10677-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics