Skip to main content

Polarization Control in Silicon Photonic Waveguide Components Using Cladding Stress Engineering

  • Chapter
  • First Online:
Silicon Photonics II

Part of the book series: Topics in Applied Physics ((TAP,volume 119))

Abstract

This chapter reviews the characteristics of SOI ridge waveguide birefringence, as governed by the waveguide cross-section geometry, the cladding stress level, and cladding thickness. Typical stress levels in dielectric cladding films such as silicon dioxide and silicon nitride are such that the stress-induced birefringence is of comparable magnitude to the waveguide geometrical birefringence. Therefore the total waveguide birefringence can be precisely controlled by counter-balancing these two factors. The application of this technique for achieving polarization independence in a variety of photonic components is described, as well as an example of polarization splitting. Passive and active tuning of the stress-induced birefringence is discussed. The use of birefringence tuning to enhance the efficiency in optical parametric processes and stress-induced Pockels electro-optic effect are also briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Poole, J. Nagel, Polarization effects in lightwave systems. Opt. Fiber Telecommun. IIIA (1997)

    Google Scholar 

  2. J. Damask, Polarization Optics in Telecommunications (Springer, New York, 2005)

    Google Scholar 

  3. K.P. Yap, A. Delâge, B. Lamontagne, S. Janz, D.-X. Xu, L. Lapointe, P. Waldron, J. Schmid, P. Chow-Chong, E. Post, B. Syrett, Scattering loss measurement of SOI waveguides using 5X17 integrated optical star coupler, in Photonics West (SPIE, San Jose, 2007), p. 64770 J.

    Google Scholar 

  4. M. Krause, H. Renner, E. Brinkmeyer, Polarization-dependent curvature loss in silicon rib waveguides. IEEE J. Sel. Top. Quantum Electron. 12, 1359–1362 (2006)

    Article  Google Scholar 

  5. M. Quintela, F. Madruga, C. Jauregui, J. Lopez-Higuera, S-EDFA and R-EDFA polarization properties comparison. Opt Commun. 255, 72–80 (2005)

    Article  ADS  Google Scholar 

  6. G. Konnen, Polarized Light in Nature (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  7. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, E. Cassan, Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths. Opt. Commun. 210, 43–49 (2002)

    Article  ADS  Google Scholar 

  8. D. Dai, S. He, Analysis of the birefringence of a silicon-on-insulator rib waveguide. Appl. Opt. 43, 1156–1161 (2004)

    Article  ADS  Google Scholar 

  9. W. Headley, G. Reed, S. Howe, A. Liu, M. Paniccia, Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator. Appl. Phys. Lett. 85, 5523–5525 (2004)

    Article  ADS  Google Scholar 

  10. I. Kiyat, A. Aydinli, N. Dagli, Polarization characteristics of compact SOI rib waveguide racetrack resonators. IEEE Photon. Technol. Lett. 17, 2098–2100 (2005)

    Article  ADS  Google Scholar 

  11. D.-X. Xu, P. Cheben, D. Dalacu, A. Delage, S. Janz, B. Lamontagne, M.J. Picard, W.N. Ye, Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress. Opt. Lett. 29, 2384–2386 (2004)

    Article  ADS  Google Scholar 

  12. W.N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.J. Picard, B. Lamontagne, N.G. Tarr, Birefringence Control using stress engineering in silicon-on-insulator (SOI) waveguides. J. Lightwave Technol. 23, 1308–1318 (2005)

    Article  ADS  Google Scholar 

  13. D.-X. Xu, S. Janz, P. Cheben, Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering. IEEE Photon. Technol. Lett. 18, 343–345 (2006)

    Article  ADS  Google Scholar 

  14. D.-X. Xu, P. Cheben, A. Delage, S. Janz, B. Lamontagne, E. Post, W.N. Ye, Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering, in Photonics West(SPIE, San Jose, 2007), p. 64770D

    Google Scholar 

  15. N. Feng, D. Feng, H. Liang, W. Qian, C. Kung, J. Fong, M. Asghari, Low-loss polarization-insensitive silicon-on-insulator-based WDM filter for triplexer applications. IEEE Photon. Technol. Lett. 20, 1968–1970 (2008)

    Article  ADS  Google Scholar 

  16. K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Huttl, C. Schubert, Performance of 40-Gb/s DPSK demodulator in SOI-technology. IEEE Photon. Technol. Lett. 20, 614–616 (2008)

    Article  ADS  Google Scholar 

  17. K. Tsia, S. Fathpour, B. Jalali, Electrical control of parametric processes in silicon waveguides. Opt. Express 16, 9838–9843 (2008)

    Article  ADS  Google Scholar 

  18. D.-X. Xu, W.N. Ye, S. Janz, A. Delage, P. Cheben, B. Lamontagne, E. Post, P. Waldron, Stress induced effects for advanced polarization control in silicon photonics components. Adv. Opt. Technol. 2008, Article ID 689715 (2008)

    Google Scholar 

  19. M. Huang, Stress effects on the performance of optical waveguides. Int. J. Solids Struct. 40, 1615–1632 (2003)

    Article  MATH  Google Scholar 

  20. W.N. Ye, D.-X. Xu, S. Janz, P. Cheben, A. Delage, M.J. Picard, B. Lamontagne, N.G. Tarr, Stress-induced birefringence in silicon-on-insulator (SOI) waveguides, in Optoelectronic Integration on Silicon (San Jose, 2004), p. 57

    Google Scholar 

  21. D.-X. Xu, P. Cheben, D. Dalacu, S. Janz, M. Picard, N.G. Tarr, W.N. Ye, Control and compensation of birefringence in SOI waveguides, in IEEE LEOS 16th Annuanl Meeting (Tucson, 2003)

    Google Scholar 

  22. M. Milosevic, P. Matavulj, B. Timotijevic, G. Reed, G. Mashanovich, Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering. J. Lightwave Technol. 26, 1840–1846 (2008)

    Article  ADS  Google Scholar 

  23. K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, C. Schubert, SOI delay interferometer with tuned polarization dependent wavelength shift for 40 Gbit/s DPSK demodulation, Group IV Photonics, Proceedings of the 4th IEEE International Conference, Tokyo (2007), pp. 1–3

    Google Scholar 

  24. V. Raghunathan, B. Jalali, Stress-induced phase matching in silicon waveguides, in Conference of Lasers and Electro-Optics (CLEO) (Long Beach, 2006), p. CMK5

    Google Scholar 

  25. B. Jalali, V. Raghunathan, D. Dimitropoulos, O. Boyraz, Raman-based silicon photonics, IEEE J. Sel. Top. Quantum Electron. 12, 412–421 (2006)

    Article  Google Scholar 

  26. W.N. Ye, D.-X. Xu, S. Janz, P. Waldron, P. Cheben, N.G. Tarr, Passive broadband silicon-on-insulator polarization splitter. Opt. Lett. 32, 1492–1494 (2007)

    Article  ADS  Google Scholar 

  27. P. Cheben, J. Schmid, A. Delage, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, D.-X. Xu, A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt. Express 15, 2299–2306 (2007)

    Article  ADS  Google Scholar 

  28. P. Cheben, A. Delage, S. Janz, D.-X. Xu, Echelle Gratings and Arrayed Waveguide Gratings for WDM and Spectral Analysis (SPIE, Billingham, 2008)

    Google Scholar 

  29. R. Soref, J. Schmidtchen, K. Petermann, Large single-mode rib waveguides in GeSi-Si and Si-on-SiO 2. IEEE J. Quantum Electron. 27, 1971–1974 (1991)

    Article  ADS  Google Scholar 

  30. S. Pogossian, L. Vescan, A. Vonsovici, The single-mode condition for semiconductor rib waveguides with large cross section. J. Lightwave Technol. 16, 1851 (1998)

    Article  ADS  Google Scholar 

  31. O. Powell, Single-mode condition for silicon rib waveguides. J. Lightwave Technol. 20, 1851 (2002)

    Article  ADS  Google Scholar 

  32. J. Xia, J. Yu, Single-mode condition for silicon rib waveguides with trapezoidal cross-section. Opt. Commun. 230, 253–257 (2004)

    Article  ADS  Google Scholar 

  33. J. Lousteau, D. Furniss, A. Seddon, T. Benson, A. Vukovic, P. Sewell, The single-mode condition for silicon-on-insulator optical rib waveguides with large cross section. J. Lightwave Technol. 22, 1923 (2004)

    Article  ADS  Google Scholar 

  34. S. Chan, C. Png, S. Lim, G. Reed, V. Passaro, Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section. J. Lightwave Technol. 23, 2103 (2005)

    Article  ADS  Google Scholar 

  35. D.-X. Xu, W.N. Ye, A. Bogdanov, D. Dalacu, A. Delage, P. Cheben, S. Janz, B. Lamontagne, M.J. Picard, Design of polarization-insensitive components using geometrical and stress-induced birefringence in SOI waveguides, in Photonics West (SPIE, San Jose, 2005), p. 158

    Google Scholar 

  36. B. Luff, D. Feng, D. Lee, W. Qian, H. Liang, M. Asghari, Hybrid silicon photonics for low-cost high-bandwidth link applications. Adv. Opt. Technol. 2008, Article ID 245131 (2008)

    Google Scholar 

  37. J. Canning, Birefringence control in planar waveguides using doped top layers. Opt. Commun. 191, 225–228 (2001)

    Article  ADS  Google Scholar 

  38. L. de Peralta, A. Bernussi, H. Temkin, M. Borhani, D. Doucette, Silicon-dioxide waveguides with low birefringence. IEEE J. Quantum Electron. 39, 874–879 (2003)

    Article  ADS  Google Scholar 

  39. A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, W. Wischmann, Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding. J. Lightwave Technol. 18, 193 (2000)

    Article  ADS  Google Scholar 

  40. C. Nadler, M. Lanker, E. Wildermuth, W. Hunziker, H. Melchior, Polarisation insensitive wavelength multiplexers using stress release grooves, Proceedings of the ECOC 98, Madrid (1998)

    Google Scholar 

  41. S. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. Bell, J. Taylor, Simple method of fabricating polarisation-insensitive and very lowcrosstalk AWG grating devices. Electron. Lett. 34, 78–79 (1998)

    Article  Google Scholar 

  42. C. Doerr, L. Buhl, W. Lin, Simple method for mitigation of polarization crosstalk in silica planar lightwave circuit directional couplers. IEEE Photon. Technol. Lett. 18, 1816–1818 (2006)

    Article  ADS  Google Scholar 

  43. COMSOL Multiphysics, http://www.comsol.com/products/multiphysics/

  44. D.-X. Xu, J. Baribeau, P. Cheben, D. Dalacu, A. Delage, B. Lamontagne, S. Janz, M. Picard, W.N. Ye, Prospects and challenges for microphotonic waveguide components based on Si and SiGe, in Electrochemical Society annual meeting (ECS, Hawaii, 2004), pp. 619–633

    Google Scholar 

  45. T. Narasimhamurty, Photoelastic and Electro-Optic Properties of Crystals (Plenum Pub Corp, New York, 1981)

    Google Scholar 

  46. J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, New York, 1992)

    Google Scholar 

  47. E. Palik, Handbook of Optical Constants of Solids (Academic press, New York, 1985)

    Google Scholar 

  48. K. Gomi, Y. Niitsu, Effect of crystalline orientation on photoelastic constant of Si single crystal Proc. SPIE 2873 (1996), 238

    ADS  Google Scholar 

  49. M. Huang, S. Dev, T. Inc, T. Dallas, The influence of light propagation direction on the stress-induced polarization dependence of silicon waveguides. IEEE Photon. Technol. Lett. 18, 1314–1316 (2006)

    Article  ADS  Google Scholar 

  50. S. He, T. Zheng, S. Danyluk, Analysis and determination of the stress-optic coefficients of thin single crystal silicon samples. J. Appl. Phys. 96, 3103 (2004)

    Article  ADS  Google Scholar 

  51. V. Au, C. Charles, R. Boswell, Interface creation and stress dynamics in plasma-deposited silicon dioxide films. Appl. Phys. Lett. 88, 234103 (2006)

    Article  ADS  Google Scholar 

  52. K. Okamoto, Fundamentals of Optical Waveguides (Academic press, New York, 2006)

    Google Scholar 

  53. M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, Birefringence control of silica waveguides on Si and itsapplication to a polarization-beam splitter/switch. J. Lightwave Technol. 12, 625–633 (1994)

    Article  ADS  Google Scholar 

  54. X. Zhao, Y. Xu, C. Li, Birefringence control in optical planar waveguides. J. Lightwave Technol. 21, 2352–2357 (2003)

    Article  ADS  Google Scholar 

  55. H. Liu, S. Murarka, Elastic and viscoelastic analysis of stress in thin films. J. Appl. Phys. 72, 3458–3463 (1992)

    Article  ADS  Google Scholar 

  56. S. Murarka, Metallization Theory and Practice for VLSI and ULSI (Butterworth-Heinemann, Northamptonshire, 1992), P. 270

    Google Scholar 

  57. A. Delage, P. Cheben, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, J. Schmid, P. Waldron, D.-X. Xu, Application of optical telecom planar technology to silicon-based microphotonics and sensors, in ICTON (Nottingham, 2006), p. Tu.D2.2

    Google Scholar 

  58. B. Almashary, H. Kim, Stress-induced vertical confinement of light in bulk GaAs and Si substrates. IEEE Photon. Technol. Lett. 8, 1358–1360 (1996)

    Article  ADS  Google Scholar 

  59. L. Yu, Z. Guan, Q. Liu, S. Lau, Silicon on insulator photoelastic optical waveguide and polarizer. Appl. Phys. Lett. 66, 2016–2018 (1995)

    Article  ADS  Google Scholar 

  60. O. Burke, I. Evans, H. Arnaud, B. Luff, Efficient polarization conversion in silicon-on-insulator waveguides, OSA trends in optics and photonics, Integrated Photonics Research Technical Digest 78, paper IThA3 (2002)

    Google Scholar 

  61. D.-X. Xu, P. Cheben, D. Dalacu, S. Janz, M. Picard, N.G. Tarr, W.N. Ye, Control and compensation of birefringence in SOI waveguides, in Proceedings of the 16th Annual Meeting of the IEEE Lasers & Electro-Optics Society (LEOS) (LEOS, Tucson, 2003)

    Google Scholar 

  62. D.-X. Xu, P. Cheben, S. Janz, D. Dalacu, Control of SOI waveguide polarization properties for microphotonic applications, in CLEO Pacific Rim (OSA, Taipei, 2003), p. TU3I

    Google Scholar 

  63. Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, M. Kawachi, Elimination of polarization sensitivity in silica-based wavelengthdivision multiplexer using a polyimide half waveplate. J. Lightwave Technol. 15, 1947–1957 (1997)

    Article  ADS  Google Scholar 

  64. J. He, E. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, Integrated polarization compensator for WDM waveguidedemultiplexers. IEEE Photon. Technol. Lett. 11, 224–226 (1999)

    Article  ADS  Google Scholar 

  65. P. Cheben, A. Bezinger, A. Delage, L. Erickson, S. Janz, D.-X. Xu, Polarization compensation in silicon-on-insulator arrayed waveguide grating devices, in Photonics West (San Jose, 2001), p. 15

    Google Scholar 

  66. P. Cheben, Wavelength Dispersive Planar Waveguide Devices: Echelle gratings and Arrayed Waveguide Gratings (CRC Press, London, 2007)

    Google Scholar 

  67. Y. Kokubun, S. Kubota, S. Chu, Polarisation-independent vertically coupled microring resonatorfilter. Electron. Lett. 37, 90–92 (2001)

    Article  Google Scholar 

  68. M. Milosevic, P. Matavulj, G. Mashanovich, Stress-induced characteristics of silicon-on-insulator rib waveguides, in Proceedings of the 15th Telecommunications Forum TELFOR (Serbia, Belgrade, 2007), pp. 401–404

    Google Scholar 

  69. A. Yariv, Universal relations for coupling of optical power betweenmicroresonators and dielectric waveguides. Electron. Lett. 36, 321–322 (2000)

    Article  Google Scholar 

  70. D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delage, S. Janz, P. Cheben, J. H. Schmid, B. Lamontagne, High bandwidth SOI photonic wire ring resonators using MMI couplers. Opt. Express 15, 3149–3155 (2007)

    Article  ADS  Google Scholar 

  71. M. Bachmann, P. Besse, H. Melchoir, General self-imaging properties in N×N multimode interference couplers including phase relations. Appl. Optics 33, 3905–3911 (1994)

    Article  ADS  Google Scholar 

  72. L. Soldano, E. Pennings, Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol. 13, 615–627 (1995)

    Article  ADS  Google Scholar 

  73. W. Headley, G. Reed, A. Liu, M. Paniccia, S. Howe, Polarization-independent optical ring resonators on silicon-on-insulator. Proc. SPIE 5451, 276 (2004)

    Article  ADS  Google Scholar 

  74. R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. Wanguemert-Perez, D.-X. Xu, P. Cheben, S. Janz, A design procedure for high-performance, rib-waveguide-based multimode interference couplers in silicon-on-insulator. J. Lightwave Technol. 26, 2928–2936 (2008)

    Article  ADS  Google Scholar 

  75. D.-X. Xu, A. Delage, S. Janz, P. Cheben, Broadband polarization compensation in silicon on insulator components, in Photonics North (SPIE, Montreal, 2008), p. 70991O

    Google Scholar 

  76. S.M. Weiss, M. Molinari, P. Fauchet, Temperature stability for silicon-based photonic band-gap structures. Appl. Phys. Lett. 83, 1980–1982 (2003)

    Article  ADS  Google Scholar 

  77. Y. Liao, R. Lu, C. Yang, W. Wang, Passive Ni: LiNbO 3 polarisation splitter at 1.3μ m wavelength. Electron. Lett. 32, 1003–1005 (1996)

    Article  Google Scholar 

  78. J. Hong, H. Ryu, S. Park, J. Jeong, S. Lee, E. Lee, S. Park, D. Woo, S. Kim, O. Beom-Hoan, Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application. IEEE Photon. Technol. Lett. 15, 72–74 (2003)

    Article  ADS  Google Scholar 

  79. I. Kiyat, A. Aydinli, N. Dagli, A compact silicon-on-insulator polarization splitter, IEEE Photon. Technol. Lett. 17, 100–102 (2005)

    Article  ADS  Google Scholar 

  80. L. Soldano, A. de Vreede, M. Smit, B. Verbeek, E. Metaal, F. Green, Mach-Zehnder interferometer polarization splitter in InGaAsP/InP. IEEE Photon. Technol. Lett. 6, 402–405 (1994)

    Article  ADS  Google Scholar 

  81. T. Liang, H. Tsang, Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photon. Technol. Lett. 17, 393–395 (2005)

    Article  ADS  Google Scholar 

  82. W.N. Ye, D.-X. Xu, S. Janz, P. Waldron, N.G. Tarr, Stress-induced SOI polarization splitter based on Mach-Zehnder Interferometers (MZI), in IEEE Group Four Photonics Conference (IEEE, Ottawa, 2006), pp. 249–251

    Google Scholar 

  83. A. Vellekoop, M. Smit, A small-size polarization splitter based on a planar optical phasedarray. J. Lightwave Technol. 8, 118–124 (1990)

    Article  ADS  Google Scholar 

  84. J. Schrauwen, D. Van Thourhout, R. Baets, Trimming of silicon ring resonator by electron beam induced compaction and strain. Opt. Express 16, 3738–3743 (2008)

    Article  ADS  Google Scholar 

  85. A. Sugita, K. Jinguji, N. Takato, M. Kawachi, Laser-trimming adjustment of waveguide birefringence in optical FDMcomponents. IEEE J. Sel. Areas Commun. 8, 1128–1131 (1990)

    Article  Google Scholar 

  86. R. Dekker, N. Usechak, M. Forst, A. Driessen, Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. J. Phys. D: Appl. Phys. 40, R249–R271 (2007)

    Article  ADS  Google Scholar 

  87. D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, Phase-matching and nonlinear optical processes in silicon waveguides. Opt. Express 12, 149–160 (2004)

    Article  ADS  Google Scholar 

  88. K. Tsia, S. Fathpour, B. Jalali, Electrical tuning of birefringence in silicon waveguides, Appl. Phys. Lett. 92, 061109 (2008)

    Article  ADS  Google Scholar 

  89. R. Jacobsen, K. Andersen, P. Borel, J. Fage-Pedersen, L. Frandsen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Dr. Siegfried Janz, Dr. Winnie Ye, Dr. Pavel Cheben, Dr. André Delâge, and Dr. Philip Waldron for their collaboration through out this work, and for many insightful discussions and suggestions in preparing this manuscript. The contribution of Dr. Winnie Ye during her Ph.D. thesis work is particularly recognized. Acknowledgments are also due to Dr. Juan Caballero, Dr. Dan Dalacu, Dr. Boris Lamontagne, Ms. Marie-Josée Picard, and Ms. Edith Post for their contribution in device fabrication and testing. The author also acknowledges the Institute for Microstructual Sciences, National Research Council Canada, for providing the opportunity and facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Xia Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, DX. (2011). Polarization Control in Silicon Photonic Waveguide Components Using Cladding Stress Engineering. In: Lockwood, D., Pavesi, L. (eds) Silicon Photonics II. Topics in Applied Physics, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10506-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10506-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10505-0

  • Online ISBN: 978-3-642-10506-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics