Skip to main content

Design Flow Automation for Silicon Photonics: Challenges, Collaboration, and Standardization

  • Chapter
  • First Online:
Silicon Photonics III

Abstract

Silicon photonics is nothing new. It has been around for decades, but in recent years, it has gained traction as electronic design challenges increase drastically with their atomic-level limitations. Silicon photonics has made significant advancements during this period, but there are many obstacles without an acceptable level of comfort as seen by the lack of semiconductor community involvement. Apart from a series of technological barriers, such as extreme fabrication sensitivity, inefficient light generation on-chip, etc., there are also certain design challenges. In this chapter, we will discuss the challenges and the opportunities in photonic integrated circuit design software tools, examine existing design flows for photonics design and how these fit different design styles, and review the activities in collaboration and standardization efforts to improve design flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Mead, L. Conway, Introduction to VLSI Systems, 1st edn. (Addison-Wesley, New York, 1979)

    Google Scholar 

  2. MATLAB by MathWorks, http://www.mathworks.com/products/matlab/

  3. Open Verilog International, Verilog-A Language Reference Manual: Analog Extension to Verilog HDL, Version 1.0, http://www.eda.org/verilog-ams (1996)

  4. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology. IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010)

    Article  Google Scholar 

  5. W. Bogaerts, M. Fiers, P. Dumon, Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20(4) (2014)

    Google Scholar 

  6. S. Dwivedi, H. D’heer, W. Bogaerts, Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filtering devices. Photonics Technol. Lett. 27(8), 871–874 (2015)

    Google Scholar 

  7. ISO Standard 11146, Lasers and laser-related equipment: Test methods for laser beam widths, divergence angles and beam propagation ratios (2005)

    Google Scholar 

  8. The IBIS Open Forum, IBIS Modeling Cookbook: For IBIS Version 4.0, http://www.eda.org/ibis (2005)

  9. P. Mena, S.-M. Steve Kang, T. De Temple, Rate-equation-based laser models with a single solution regime. J. Lightwave Technol. 15(4), 717–730 (1997)

    Google Scholar 

  10. J. Klein, J. Pond, Simulation and Optimization of Photonic Integrated Circuits. Advanced Photonics Congress, OSA Technical Digest, paper IM2B.2 (2012)

    Google Scholar 

  11. M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, P. Bienstman, Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach. J. Opt. Soc. Am. B 29(5), 896–900 (2012)

    Google Scholar 

  12. D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2004)

    Google Scholar 

  13. Lumerical Solutions, INTERCONNECT, https://www.lumerical.com/solutions/partners/eda/mentor_graphics/

  14. B. Gustavsen, A. Semlyen, Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14(3) (1999)

    Google Scholar 

  15. G. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)

    Google Scholar 

  16. T. Baehr-Jones, Ultralow drive voltage silicon traveling-wave modulator. Opt. Express 20, 12014–12020 (2012)

    Article  ADS  Google Scholar 

  17. X. Wang, J. Pond, J. Klein, A.E-J. Lim, K.K. Chen G-Q. Lo, Enabling scalable silicon photonic circuit design and fabrication. OECC, Shanghai, China (2015)

    Google Scholar 

  18. N. Dessislava et al., Scaling silicon photonic switch fabrics for data center interconnection networks. Opt. Express 23(2), 1159–1175 (2015)

    Google Scholar 

  19. J. Ruiqiang et al., Five-port optical router for photonic networks-on-chip. Opt. Express 19(21), 20258–20268 (2011)

    Google Scholar 

  20. E. Lach, W. Idler, Modulation formats for 100G and beyond. Opt. Fiber Technol. 17(5), 377–386 (2011)

    Article  ADS  Google Scholar 

  21. Luceda Photonics, IPKISS, http://www.lucedaphotonics.com/

  22. Mentor Graphics, AMPLE, http://www.mentor.com/training/courses/ample

  23. PhoeniX Software, OptoDesigner, http://www.phoenixbv.com/optodesigner

  24. W. Bogaerts, Design Challenges in Large-Scale Silicon Photonics, in Design Automation Conference, Austin (2013)

    Google Scholar 

  25. R. Cao, J. Ferguson, F. Gays, Y. Drissi, A. Arriordaz, I. Connor, Silicon Photonics Design Rule Checking: Application of a Programmable Modeling Engine for Non-Manhattan Geometry Verification, in IFIP/IEEE 22nd International Conference on Very Large Scale Integration (VLSI-SoC), Playa del Carmen (2014)

    Google Scholar 

  26. R. Cao, J. Billoudet, J. Ferguson, L. Couder, J. Cayo, A. Arriordaz, C. Lyon, LVS Check for Photonic Integrated Circuits: Curvilinear Feature Extraction and Validation, in DATE Conference, Grenoble, France (2015)

    Google Scholar 

  27. J. Li, L. O’Faolain, S. Schulz, T.F. Krauss, Low loss propagation in slow light photonic crystal waveguides at group indices up to 60. Photonics Nanostruct. Fundam. Appl. 10(4), 589–593 (2012)

    Google Scholar 

  28. P. Cheben, J. Lapointe, D. Xu, S. Janz, M. Vachon, S. Wang, P. Bock, D. Benedikovic, R. Halir, A. Ortega-Monux, C. Ramos, J. Perez, I. Molina-Fernandez, Silicon photonic integration with subwavelength gratings, in IEEE 16th International Conference on Transparent Optical Networks (ICTON), (2014), pp. 1–2

    Google Scholar 

  29. Y. Vlasov, M. O’Boyle, H. Hamann, S. McNab, Active control of slow light on a chip with photonic crystal waveguides. Nature 438(7064), 65–69 (2005)

    Article  ADS  Google Scholar 

  30. D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quantum Electron. 38(7), 949–955 (2002)

    Article  ADS  Google Scholar 

  31. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010)

    Article  Google Scholar 

  32. E. Dulkeith, F. Xia, L. Schares, W. Green, Y. Vlasov, Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14(9), 3853–3863 (2006) (Optical Society of America)

    Google Scholar 

  33. Lumerical, Unified Design Flow for Silicon Photonics, http://www.lumerical.com/tcad-products/interconnect/eda/mentor_graphics/

  34. Lumerical, PhoeniX Software Integration, http://www.lumerical.com/phoenix/

  35. OpenAccess, http://www.si2.org/?page=1181

  36. Open Matrices, http://www.si2.org/?page=1777

  37. MCC, http://foldoc.org/Microelectronics+and+Computer+Technology+Corporation

  38. Interview with Sumit Dasgupta, Vice President of Engineering for Si2 from 2003 to 2013, March 27, 2015

    Google Scholar 

  39. NCRPA, http://www.justice.gov/atr/foia/divisionmanual/204293.htm

  40. PDAFlow Foundation, Enschede, The Netherlands, http://www.pdaflow.org

  41. Filarete, Milano, Italy, http://www.aspicdesign.com

  42. Optiwave, Ottawa, Canada, http://www.optiwave.com

  43. Photon Design, http://www.photond.com

  44. VPI Photonics, Berlin, Germany, http://www.vpiphotonics.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Nesmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heins, M. et al. (2016). Design Flow Automation for Silicon Photonics: Challenges, Collaboration, and Standardization. In: Pavesi, L., Lockwood, D. (eds) Silicon Photonics III. Topics in Applied Physics, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10503-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10503-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10502-9

  • Online ISBN: 978-3-642-10503-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics