Skip to main content

Unsupervised Learning in Reservoir Computing: Modeling Hippocampal Place Cells for Small Mobile Robots

  • Conference paper
Book cover Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Included in the following conference series:

Abstract

Biological systems (e.g., rats) have efficient and robust localization abilities provided by the so called, place cells, which are found in the hippocampus of rodents and primates (these cells encode locations of the animal’s environment). This work seeks to model these place cells by employing three (biologically plausible) techniques: Reservoir Computing (RC), Slow Feature Analysis (SFA), and Independent Component Analysis (ICA). The proposed architecture is composed of three layers, where the bottom layer is a dynamic reservoir of recurrent nodes with fixed weights. The upper layers (SFA and ICA) provides a self-organized formation of place cells, learned in an unsupervised way. Experiments show that a simulated mobile robot with 17 noisy short-range distance sensors is able to self-localize in its environment with the proposed architecture, forming a spatial representation which is dependent on the robot direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  2. Arleo, A., Smeraldi, F., Gerstner, W.: Cognitive navigation based on nonuniform gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Transactions on Neural Networks 15(3), 639–652 (2004)

    Article  Google Scholar 

  3. Franzius, M., Sprekeler, H., Wiskott, L.: Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Comput. Biol. 3(8), 1605–1622 (2007)

    Article  MathSciNet  Google Scholar 

  4. Stroesslin, T., Sheynikhovich, D., Chavarriaga, R., Gerstner, W.: Robust self-localisation and navigation based on hippocampal place cells. Neural Networks 18(9), 1125–1140 (2005)

    Article  MATH  Google Scholar 

  5. Chavarriaga, R., Strsslin, T., Sheynikhovich, D., Gerstner, W.: A computational model of parallel navigation systems in rodents. Neuroinformatics 3, 223–241 (2005)

    Article  Google Scholar 

  6. Moser, E.I., Kropff, E., Moser, M.B.: Place cells, grid cells and the brains spatial representation system. Annual Reviews of Neuroscience 31, 69–89 (2008)

    Article  Google Scholar 

  7. Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir computing: theory, applications and implementations. In: Proc. of ESANN (2007)

    Google Scholar 

  8. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Technical Report GMD Report 148, German National Research Center for Information Technology (2001)

    Google Scholar 

  9. Wiskott, L., Sejnowski, T.J.: Slow feature analysis: Unsupervised learning of invariances. Neural Computation 14(4), 715–770 (2002)

    Article  MATH  Google Scholar 

  10. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13, 411–430 (2000)

    Article  Google Scholar 

  11. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  12. Yamazaki, T., Tanaka, S.: The cerebellum as a liquid state machine. Neural Networks 20, 290–297 (2007)

    Article  MATH  Google Scholar 

  13. Jaeger, H., Lukosevicius, M., Popovici, D.: Optimization and applications of echo state networks with leaky integrator neurons. Neural Networks 20, 335–352 (2007)

    Article  MATH  Google Scholar 

  14. Berkes, P., Wiskott, L.: Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision 5, 579–602 (2005)

    Article  MATH  Google Scholar 

  15. Antonelo, E.A., Baerlvedt, A.J., Rognvaldsson, T., Figueiredo, M.: Modular neural network and classical reinforcement learning for autonomous robot navigation: Inhibiting undesirable behaviors. In: Proceedings of IJCNN, Vancouver, Canada, pp. 498–505 (2006)

    Google Scholar 

  16. Antonelo, E.A., Schrauwen, B., Stroobandt, D.: Event detection and localization for small mobile robots using reservoir computing. Neural Networks 21, 862–871 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antonelo, E.A., Schrauwen, B. (2009). Unsupervised Learning in Reservoir Computing: Modeling Hippocampal Place Cells for Small Mobile Robots. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics