Skip to main content

Generalizing the Four Gamete Condition and Splits Equivalence Theorem: Perfect Phylogeny on Three State Characters

  • Conference paper
Algorithms in Bioinformatics (WABI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Included in the following conference series:

Abstract

We study the three state perfect phylogeny problem and show that there is a three state perfect phylogeny for a set of input sequences if and only if there is a perfect phylogeny for every subset of three characters. In establishing these results, we prove fundamental structural features of the perfect phylogeny problem on three state characters and completely characterize the obstruction sets that must occur in input sequences that do not have a perfect phylogeny. We also give a proof for a stated lower bound involved in the conjectured generalization of our main result to any number of states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., Fernandez-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal on Computing 23, 1216–1224 (1994)

    Article  Google Scholar 

  2. Bafna, V., Bansal, V.: Improved recombination lower bounds for haplotype data. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 569–584. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bafna, V., Bansal, V.: The number of recombination events in a sample history: Conflict graph and lower bounds. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1, 78–90 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Bafna, V., Gusfield, D., Hannenhalli, G., Yooseph, S.: A note on efficient computation of haplotypes via perfect phylogeny. Journal of Computational Biology 11, 858–866 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: A direct approach. Journal of Computational Biology 10, 323–340 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Blelloch, G.E., Dhamdhere, K., Halperin, E., Ravi, R., Schwartz, R., Sridhar, S.: Fixed parameter tractability of binary near-perfect phylogenetic tree reconstruction. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 667–678. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Bodlaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny. In: International Colloquium on Automata, Languages and Programming, pp. 273–283 (1992)

    Google Scholar 

  8. Bodlaender, H., Kloks, T.: A simple linear time algorithm for triangulating three-colored graphs. J. Algorithms 15(1), 160–172 (1993)

    Article  Google Scholar 

  9. Bonizzoni, P.: A linear-time algorithm for the perfect phylogeny haplotype problem. Algorithmica 48, 267–285 (2007)

    Article  Google Scholar 

  10. Buneman, P.: A characterization of rigid circuit graphs. Discrete Math. 9, 205–212 (1974)

    Article  Google Scholar 

  11. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping problem. J. of Computational Biology 13, 522–553 (2006)

    Article  CAS  Google Scholar 

  12. Dress, A., Steel, M.: Convex tree realizations of partitions. Applied Math. Letters 5, 36 (1993)

    Google Scholar 

  13. Eskin, E., Halperin, E., Karp, R.M.: Efficient reconstruction of haplotype structure via perfect phylogeny. Journal of Bioinformatics and Computational Biology, 1–20 (2003)

    Google Scholar 

  14. Estabrook, G., Johnson, C., McMorris, F.: A mathematical formulation for the analysis of cladistic character compatibility. Math. Bioscience 29 (1976)

    Google Scholar 

  15. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  16. Fitch, W.M.: Toward finding the tree of maximum parsimony. In: Estabrook, G.F. (ed.) The Eighth International Conference on Numerical Taxonomy, pp. 189–220. W. H. Freeman and Company, San Francisco (1975)

    Google Scholar 

  17. Fitch, W.M.: On the problem of discovering the most parsimonious tree. American Naturalist 11, 223–257 (1977)

    Article  Google Scholar 

  18. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  Google Scholar 

  19. Gusfield, D.: Haplotyping as a perfect phylogeny: Conceptual framework and efficient solutions. In: Research in Computational Molecular Biology (2002)

    Google Scholar 

  20. Gusfield, D.: Optimal, efficient reconstruction of Root-Unknown phylogenetic networks with constrained and structured recombination. JCSS 70, 381–398 (2005)

    Google Scholar 

  21. Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic networks and incompatible characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Gusfield, D., Bansal, V., Bafna, V., Song, Y.: A decomposition theory for phylogenetic networks and incompatible characters. Journal of Computational Biology 14(10), 1247–1272 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinformatics and Computational Biology 2(1), 173–213 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Gusfield, D., Hickerson, D., Eddhu, S.: An efficiently-computed lower bound on the number of recombinations in phylogenetic networks: Theory and empirical study. Discrete Applied Math. 155, 806–830 (2007); Special issue on Computational Biology

    Google Scholar 

  25. Gusfield, D.: The multi-state perfect phylogeny problem with missing and removable data. In: Research in Computational Molecular Biology, RECOMB (2009)

    Google Scholar 

  26. Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using imperfect phylogeny. Bioinformatics (2004)

    Google Scholar 

  27. Hudson, R., Kaplan, N.: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Huson, D., Klopper, T., Lockhart, P.J., Steel, M.A.: Reconstruction of reticulate networks from gene trees. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 233–249. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. Idury, R.M., Schäffer, A.A.: Triangulating three-colored graphs in linear time and linear space. SIAM J. Discret. Math. 6(2), 289–293 (1993)

    Article  Google Scholar 

  30. Kannan, S., Warnow, T.: Triangulating three-colored graphs. In: SODA 1991: Proc. ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 337–343 (1991)

    Google Scholar 

  31. Kannan, S., Warnow, T.: Inferring evolutionary history from DNA sequences. SIAM J. on Computing 23, 713–737 (1994)

    Article  Google Scholar 

  32. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM Journal on Computing 26, 1749–1763 (1997)

    Article  Google Scholar 

  33. Meacham, C.: Theoretical and computational considerations of the compatibility of qualitative taxonomic characters. Nato ASI series, vol. G1 on Numerical Taxonomy. Springer, Heidelberg (1983)

    Google Scholar 

  34. Satya, R.V., Mukherjee, A.: An optimal algorithm for perfect phylogeny haplotyping. Journal of Computational Biology 13, 897–928 (2006)

    Article  Google Scholar 

  35. Satya, R.V., Mukherjee, A., Alexe, G., Parida, L., Bhanot, G.: Constructing near-perfect phylogenies with multiple homoplasy events. Bioinformatics 22, e514–i522 (2006); Bioinformatics Suppl., Proceedings of ISMB 2006 (2006)

    Google Scholar 

  36. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    Google Scholar 

  37. Sridhar, S., Blelloch, G.E., Ravi, R., Schwartz, R.: Optimal imperfect phylogeny reconstruction and haplotyping. In: Proceedings of Computational Systems Bioinformatics, CSB (2006)

    Google Scholar 

  38. Sridhar, S., Dhamdhere, K., Blelloch, G.E., Halperin, E., Ravi, R., Schwartz, R.: Simple reconstruction of binary near-perfect phylogenetic trees. In: International Workshop on Bioinformatics Research and Applications (2006)

    Google Scholar 

  39. Sridhar, S., Dhamdhere, K., Blelloch, G.E., Halperin, E., Ravi, R., Schwartz, R.: Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice. ACM/IEEE Transactions on Computational Biology and Bioinformatics (2007)

    Google Scholar 

  40. Steel, M.A.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9, 91–116 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lam, F., Gusfield, D., Sridhar, S. (2009). Generalizing the Four Gamete Condition and Splits Equivalence Theorem: Perfect Phylogeny on Three State Characters. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics