Skip to main content

Experiments on Quantum Transport of Ultra-Cold Atoms in Optical Potentials

  • Chapter
  • First Online:
Time in Quantum Mechanics - Vol. 2

Part of the book series: Lecture Notes in Physics ((LNP,volume 789))

  • 2221 Accesses

Abstract

In this chapter, we describe our experiments with ultra cold atoms in optical potentials and show how we can address fundamental issues of time in quantum mechanics. The high degree of experimental control and the conceptual simplicity are the main advantages of our system. We start with an overview of the basic interaction of atoms and light and make the connection between atoms in optical lattices and solid state physics. While this latter connection has evolved into a major theme in physics over the past decade, at the time of this work it was still new and unexplored. After introduction of the theoretical model and the basic equations, we introduce the experimental apparatus. We then review our experiments to observe the Wannier–Stark ladder in an accelerating lattice. This system was used to study quantum tunneling where short-time non-exponential decay was first observed for an

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York, 1965)

    Google Scholar 

  2. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    MATH  Google Scholar 

  3. C.F. Bharucha, K.W. Madison, P.R. Morrow, S.R. Wilkinson, B. Sundaram, M.G. Raizen, Phys. Rev. A 55, R857 (1997)

    Article  ADS  Google Scholar 

  4. F. Bloch, Z. Phys. 52, 555 (1928)

    Article  ADS  Google Scholar 

  5. C.B. Chiu, E.C.G. Sudarshan, B. Misra, Phys. Rev. D 16, 520 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Chu, Science 253, 861 (1991)

    Article  ADS  Google Scholar 

  7. S. Chu, Rev. Mod. Phys. 70, 685 (1998)

    Article  ADS  Google Scholar 

  8. C.S. Chuu, F. Schreck, T.P. Meyrath, J.L. Hanssen, G.N. Price, M.G. Raizen, Phys. Rev. Lett. 95, 260403 (2005)

    Article  ADS  Google Scholar 

  9. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (Wiley and Sons, New York, 1992)

    Google Scholar 

  10. P. Facchi, H. Nakazato, S. Pascazio, Phys. Rev. Lett. 86, 2699 (2001)

    Article  ADS  Google Scholar 

  11. M.C. Fischer, Atomic Motion in Optical Potentials, Ph.D. thesis, The University of Texas at Austin (2001)

    Google Scholar 

  12. M.C. Fischer, B. Gutiérrez-Medina, M.G. Raizen, Phys. Rev. Lett. 87, 040402 (2001)

    Article  ADS  Google Scholar 

  13. M.C. Fischer, K.W. Madison, Q. Niu, M.G. Raizen, Phys. Rev. A 58, R2648 (1998)

    Article  ADS  Google Scholar 

  14. L. Fonda, G.C. Ghirardi, G.C. Rimini, Rep. Prog. Phys. 41, 587 (1978)

    Article  ADS  Google Scholar 

  15. O.R. Frisch, Z. Phys. 86, 42 (1933)

    Article  ADS  Google Scholar 

  16. R. Graham, M. Schlautmann, P. Zoller, Phys. Rev. A 45, R19 (1992)

    Article  ADS  Google Scholar 

  17. P.T. Greenland, A.M. Lane, Phys. Lett. A 117, 181 (1986)

    Article  ADS  Google Scholar 

  18. K. Grotz, H.V. Klapdor, Phys. Rev. C 30, 2098 (1984)

    Article  ADS  Google Scholar 

  19. W.M. Itano, D.J. Heinzen, J.J. Bollinger, D.J. Wineland, Phys. Rev. A 41, 2295 (1990)

    Article  ADS  Google Scholar 

  20. L.A. Khalfin, JETP 6, 1053 (1958)

    ADS  Google Scholar 

  21. A.G. Kofman, G. Kurizki, Phys. Rev. A 54, R3750 (1996)

    Article  ADS  Google Scholar 

  22. A.G. Kofman, G. Kurizki, Nature 405, 546 (2000)

    Article  ADS  Google Scholar 

  23. J.B. Krieger, G.J. Iafrate, Phys. Rev. B 33, 5494 (1986)

    Article  ADS  Google Scholar 

  24. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. Kasevich, Phys. Rev. Lett. 74, 4763 (1995)

    Article  ADS  Google Scholar 

  25. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983)

    MATH  Google Scholar 

  26. K.W. Madison, Quantum Transport in Optical Lattices, Ph.D. thesis, The University of Texas at Austin (1998)

    Google Scholar 

  27. K.W. Madison, C.F. Bharucha, P.R. Morrow, S.R. Wilkinson, Q. Niu, B. Sundaram, M.G. Raizen, Appl. Phys. B 65, 693 (1997)

    Article  ADS  Google Scholar 

  28. K.W. Madison, M.C. Fischer, R.B. Diener, Q. Niu, M.G. Raizen, Phys. Rev. Lett. 81, 5093 (1998)

    Article  ADS  Google Scholar 

  29. K.W. Madison, M.C. Fischer, M.G. Raizen, Phys. Rev. A 60, R1767 (1999)

    Article  ADS  Google Scholar 

  30. M.P. Marder, Condensed Matter Physics (Wiley and Sons, New York, 2000)

    Google Scholar 

  31. E.E. Mendez, G. Bastard, Phys. Today 46(6), 34 (1993)

    Article  Google Scholar 

  32. P.W. Milonni, J.H. Eberly, Lasers (Wiley and Sons, New York, 1988)

    Google Scholar 

  33. B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18, 756 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  34. Q. Niu, M.G. Raizen, Phys. Rev. Lett. 80, 3491 (1998)

    Article  ADS  Google Scholar 

  35. Q. Niu, X.G. Zhao, G.A. Georgakis, M.G. Raizen, Phys. Rev. Lett. 76, 4504 (1996)

    Article  ADS  Google Scholar 

  36. E. Peik, M.B. Dahan, I. Bouchoule, Y. Castin, C. Salomon, Phys. Rev. A 55, 2989 (1997)

    Article  ADS  Google Scholar 

  37. E. Raab, M. Prentiss, A. Cable, S. Chu, D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987)

    Article  ADS  Google Scholar 

  38. M.G. Raizen, C. Salomon, Q. Niu, Phys. Today 50(7), 30 (1997)

    Article  Google Scholar 

  39. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, New York, 1994)

    Google Scholar 

  40. D.A. Steck, Sodium D Line Data (2001), available at http://steck.us/alkalidata

  41. P. Valanju, E.C.G. Sudarshan, C.B. Chiu, Phys. Rev. D 21, 1304 (1980)

    Article  ADS  Google Scholar 

  42. S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen, Nature 387, 575 (1997)

    Article  ADS  Google Scholar 

  43. R.G. Winter, Phys. Rev. 123, 1503 (1961)

    Article  ADS  Google Scholar 

  44. C. Zener, Proc. R. Soc. Lond. A 137, 696 (1932)

    Article  ADS  Google Scholar 

  45. C. Zener, Proc. R. Soc. Lond. A 145, 523 (1934)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, M.C., Raizen, M.G. (2009). Experiments on Quantum Transport of Ultra-Cold Atoms in Optical Potentials. In: Muga, G., Ruschhaupt, A., del Campo, A. (eds) Time in Quantum Mechanics - Vol. 2. Lecture Notes in Physics, vol 789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03174-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03174-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03173-1

  • Online ISBN: 978-3-642-03174-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics