Skip to main content

Anisotropic Regularization for Inverse Problems with Application to the Wiener Filter with Gaussian and Impulse Noise

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

Most inverse problems require a regularization term on the data. The classic approach for the variational formulation is to use the L 2 norm on the data gradient as a penalty term. This however acts as a low pass filter and thus is not good at preserving edges in the reconstructed data.

In this paper we propose a novel approach whereby an anisotropic regularization is used to preserve object edges. This is achieved by calculating the data gradient over a Riemannian manifold instead of the standard Euclidean space using the Laplace-Beltrami approach. We also employ a modified fidelity term to handle impulse noise.

This approach is applicable to both scalar and vector valued images. The result is demonstrate via the Wiener filter with several approaches for minimizing the functional including a novel GSVD based spectral approach applicable to functionals containing gradient based features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodman, J.: Introduction to Fourier Optics. McGraw-Hill Book Company, New York (1996)

    Google Scholar 

  2. Jähne, B.: Digital Image Processing, 5th edn. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  3. Gonzalez, R.C., Woods, R.E.: Digital image processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  4. Bar, L., Sochen, N., Kiryati, N.: Semi-blind image restoration via mumford-shah regularization. IEEE Trans. on Image Processing 15(2), 483–493 (2005)

    Article  Google Scholar 

  5. Bar, L., Kiryati, N., Sochen, N.: Image deblurring in the presence of impulsive noise. Int. J. Comput. Vision 70(3), 279–298 (2006)

    Article  MATH  Google Scholar 

  6. Blomgren, P., Chan, T.F.: Color tv: Total variation methods for restoration of vector-valued images. IEEE Trans. Image Processing 7, 304–309 (1998)

    Article  Google Scholar 

  7. Chan, T.F., Vese, L.A.: Image segmentation using level sets and the piecewise-constant mumford-shah model. Technical Report 00-14, UCLA CAM (2000)

    Google Scholar 

  8. Charbonnier, P., Blanc-féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Processing 6, 298–311 (1997)

    Article  Google Scholar 

  9. Welk, M., Theis, D., Weickert, J.: Variational deblurring of images with uncertain and spatially variant blurs. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 485–492. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Jalobeanu, A., Blanc-Feraud, L., Zerubia, J.: An adaptive gaussian model for satellite image deblurring. IEEE Transactions on Image Processing (4), 613–621 (2004)

    Google Scholar 

  11. Krajsek, K., Mester, R.: The edge preserving wiener filter for scalar and tensor valued images. In: DAGM-Symposium, pp. 91–100 (2006)

    Google Scholar 

  12. Kaftory, R., Sochen, N., Zeevi, Y.Y.: Variational blind deconvolution of multi-channel images. Int. J. Imaging Science and Technology 15(1), 56–63 (2005)

    Article  Google Scholar 

  13. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Processing, Special Issue on Geometry Driven Diffusion 7, 310–318 (1998)

    MATH  Google Scholar 

  14. Aharon, M., Elad, M., Bruckstein, A.: The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. On Signal Processing 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  15. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: Movies, color, texture, and volumetric medical images. International Journal of Computer Vision 39, 111–129 (2000)

    Article  MATH  Google Scholar 

  16. Sagiv, C., Sochen, N., Zeevi, Y.: Gabor features diffusion via the minimal weighted area method. In: EMMCVPR (September 2001)

    Google Scholar 

  17. Feigin, M., Sochen, N., Vemuri, B.C.: Efficient anisotropic α-kernels decompositions and flows. In: POCV (2008)

    Google Scholar 

  18. Golub, G.H., Loan, C.F.V.: Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feigin, M., Sochen, N. (2009). Anisotropic Regularization for Inverse Problems with Application to the Wiener Filter with Gaussian and Impulse Noise. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics