Skip to main content

Conquering the Needle-in-a-Haystack: How Correlated Input Variables Beneficially Alter the Fitness Landscape for Neural Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5483))

Abstract

Evolutionary algorithms such as genetic programming and grammatical evolution have been used for simultaneously optimizing network architecture, variable selection, and weights for artificial neural networks. Using an evolutionary algorithm to perform variable selection while searching for non-linear interactions is akin to searching for a needle in a haystack. There is, however, a considerable amount of correlation among variables in biological datasets, such as in microarray or genetic studies. Using the XOR problem, we show that correlation between non-functional and functional variables alters the variable selection fitness landscape by broadening the fitness peak over a wider range of potential input variables. Furthermore, when sub-optimal weights are used, local optima in the variable selection fitness landscape appear centered on each of the two functional variables. These attributes of the fitness landscape may supply building blocks for evolutionary search procedures, and may provide a rationale for conducting a local search for variable selection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linder, R., Richards, T., Wagner, M.: Microarray data classified by artificial neural networks. Methods Mol. Biol. 382, 345–372 (2007)

    Article  Google Scholar 

  2. Lucek, P., Hanke, J., Reich, J., Solla, S.A., Ott, J.: Multi-locus nonparametric linkage analysis of complex trait loci with neural networks. Hum. Hered. 48(5), 275–284 (1998)

    Article  Google Scholar 

  3. Marinov, M., Weeks, D.: The complexity of linkage analysis with neural networks. Human Heredity 51, 169–176 (2001)

    Article  Google Scholar 

  4. Ott, J.: Neural networks and disease association studies. American Journal of Medical Genetics (Neuropsychiatric Genetics) 105(60), 61 (2001)

    Google Scholar 

  5. Lisboa, P.J., Taktak, A.F.: The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw. 19(4), 408–415 (2006)

    Article  MATH  Google Scholar 

  6. Ohlsson, M.: WeAidU-a decision support system for myocardial perfusion images using artificial neural networks. Artif. Intell. Med. 30(1), 49–60 (2004)

    Article  Google Scholar 

  7. Porter, C.R., Crawford, E.D.: Combining artificial neural networks and transrectal ultrasound in the diagnosis of prostate cancer. Oncology (Williston. Park) 17(10), 1395–1399 (2003)

    Google Scholar 

  8. Sato, F., Shimada, Y., Selaru, F.M., Shibata, D., Maeda, M., Watanabe, G., Mori, Y., Stass, S.A., Imamura, M., Meltzer, S.J.: Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer 103(8), 1596–1605 (2005)

    Article  Google Scholar 

  9. Meiler, J., Baker, D.: Coupled prediction of protein secondary and tertiary structure. Proc. Natl. Acad. Sci. U.S.A 100(21), 12105–12110 (2003)

    Article  Google Scholar 

  10. Bishop, C.M.: Neural Networks for Pattern Recognition, pp. 1–482. Oxford University Press, London (1995)

    Google Scholar 

  11. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  12. Motsinger, A.A., Lee, S.L., Mellick, G., Ritchie, M.D.: GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinformatics 7, 39 (2006)

    Article  Google Scholar 

  13. Ritchie, M.D., Coffey, C.S.M.J.H.: Genetic programming neural networks: A bioinformatics tool for human genetics. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 438–448. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Motsinger-Reif, A.A., Fanelli, T.J., Davis, A.C., Ritchie, M.D.: Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error. BMC. Res. Notes 1, 65 (2008)

    Article  Google Scholar 

  15. Koza, J., Rice, J.: Genetic generation of both the weights and architecture for a neural network. IEEE Transactions II (1991)

    Google Scholar 

  16. O’Neil, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language, 1st edn. Kluwer Academic Publishers, Norwell (2003)

    Book  Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks Proceedings, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  18. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Skinner, A.J., Broughton, J.Q.: Neural networks in computational materials science: training algorithms. Modelling and Simulation in Materials Science and Engineering 3(3), 371–390 (1995)

    Article  Google Scholar 

  20. Likartsis, A., Vlachavas, I., Tsoukalas, L.H.: A new hybrid neural-genetic methodology for improving learning. In: Ninth IEEE International Conference on Tools with Artificial Intelligence Proceedings, pp. 32–36 (1997)

    Google Scholar 

  21. Cantu-Paz, E., Kamath, C.: Evolving neural networks to identify bent-double galaxies in the FIRST survey. Neural Networks 16, 507–517 (2008)

    Article  Google Scholar 

  22. Gibson, G.: Epistasis and pleiotropy as natural properties of transcriptional regulation. Theor. Popul. Biol., 49(1), 58–89 (1996)

    Article  MATH  Google Scholar 

  23. Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered. 56(1-3), 73–82 (2003)

    Article  Google Scholar 

  24. Weiss, K.M., Terwilliger, J.D.: How many diseases does it take to map a gene with SNPs? Nat. Genet. 26(2), 151–157 (2000)

    Article  Google Scholar 

  25. Freitas, A.: Understand the Crucial Role of Attribute Interactions in Data Mining, 16th edn., pp. 177–199 (2001)

    Google Scholar 

  26. Li, W., Reich, J.: A complete enumeration and classification of two-locus disease models, 50th edn., pp. 334–349 (2000)

    Google Scholar 

  27. Komili, S., Silver, P.A.: Coupling and coordination in gene expression processes: a systems biology view. Nat. Rev. Genet. 9(1), 38–48 (2008)

    Article  Google Scholar 

  28. International hapmap consortium; The International HapMap Project. Nature 426(6968), 789–796 (2003)

    Google Scholar 

  29. International hapmap consortium; A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164), 851–861 (2007)

    Google Scholar 

  30. Kruglyak, L.: Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22(2), 139–144 (1999)

    Article  Google Scholar 

  31. Hill, W.G., Robertson, A.: Linkage disequilibrium in finite populations. Theoretical and Applied Genetics 38(6), 226–231 (1968)

    Article  Google Scholar 

  32. Daqi, G., Yan, J.: Classification methodologies of multilayer perceptrons with sigmoid activation functions. Pattern Recognition 38(10), 1469–1482 (2005)

    Article  Google Scholar 

  33. Barrett, J.C., Fry, B., Maller, J., Daly, M.J.: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2), 263–265 (2005)

    Article  Google Scholar 

  34. Fields Development Team, Fields: Tools for Spatial Data, National Center for Atmospheric Research, Boulder, CO (2005), http://www.cgd.ucar.edu/Software/Fields

  35. R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2005) ISBN 3900051070, http://www.R-project.org

  36. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  37. Sabeti, P.C., Reich, D.E., Higgins, J.M., Levine, H.Z., Richter, D.J., Schaffner, S.F., Gabriel, S.B., Platko, J.V., Patterson, N.J., McDonald, G.J., Ackerman, H.C., Campbell, S.J., Altshuler, D., Cooper, R., Kwiatkowski, D., Ward, R., Lander, E.S.: Detecting recent positive selection in the human genome from haplotype structure. Nature 419(6909), 832–837 (2002)

    Article  Google Scholar 

  38. Smith, J.M., Haigh, J.: The hitch-hiking effect of a favourable gene. Genet. Res. 23(1), 23–35 (1974)

    Article  Google Scholar 

  39. Gilad, Y., Rosenberg, S., Przeworski, M., Lancet, D., Skorecki, K.: Evidence for positive selection and population structure at the human MAO-A gene. Proc. Natl. Acad. Sci. U.S.A 99(2), 862–867 (2002)

    Article  Google Scholar 

  40. Tang, K., Wong, L.P., Lee, E.J., Chong, S.S., Lee, C.G.: Genomic evidence for recent positive selection at the human MDR1 gene locus. Hum. Mol. Genet. 13(8), 783–797 (2004)

    Article  Google Scholar 

  41. Ding, Y.C., Chi, H.C., Grady, D.L., Morishima, A., Kidd, J.R., Kidd, K.K., Flodman, P., Spence, M.A., Schuck, S., Swanson, J.M., Zhang, Y.P., Moyzis, R.K.: Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl. Acad. Sci. U.S.A 99(1), 309–314 (2002)

    Article  Google Scholar 

  42. Motsinger, A.A., Reif, D.M., Fanelli, T.J., Davis, A.C., Ritchie, M.D.: Linkage Disequilibrium in Genetic Association Studies Improves the Performance of Grammatical Evolution Neural Networks. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, pp. 1–8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turner, S.D., Ritchie, M.D., Bush, W.S. (2009). Conquering the Needle-in-a-Haystack: How Correlated Input Variables Beneficially Alter the Fitness Landscape for Neural Networks. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2009. Lecture Notes in Computer Science, vol 5483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01184-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01184-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01183-2

  • Online ISBN: 978-3-642-01184-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics