Skip to main content

Toll-Like Receptors in CNS Parasitic Infections

  • Chapter
  • First Online:
Toll-like Receptors: Roles in Infection and Neuropathology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 336))

Abstract

Parasite infections in the central nervous system (CNS) are a major cause of morbidity and mortality worldwide, second only to HIV infection. Finding appropriate therapeutic measures to control CNS parasite infections requires an understanding of the tissue-specific host response. CNS parasitic diseases are invariably associated with persistent T-helper 1 (Th1) cytokine-dependent proinflammatory responses. Although type 1 cytokine-dependent proinflammatory responses are essential to control several types of parasite infections, their persistent production contributes to the development of neuropathology with severe consequences. A family of proteins called Toll-like receptors (TLRs) plays a pivotal role in the induction of inflammatory cytokines during infections and tissue injury. Accumulating evidence indicates that in several CNS parasitic infections such as toxoplasmosis and sleeping sickness, host responses mediated through TLRs contribute to parasite clearance and host survival. However, TLR-mediated responses can also contribute to disease severity, as exemplified in cerebral malaria, neurocysticercosis and river blindness. Thus, TLRs influence the immunopathogenesis of CNS parasitic infections by mechanisms that can either benefit the host or further contribute to CNS pathology. This chapter discusses the immunopathogenesis of parasitic infections in the CNS and the role of TLRs in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DC:

Dendritic cell

GPI:

Glycosylphosphatidylinositol

ICAM-1:

Intercellular adhesion molecule 1

LNFPIII:

Lacto-N-fucopentose III

Lyso-PS:

Lysophosphatidylserine

MyD88:

Myeloid differentiation factor 88

MAL/TIRAP:

MyD88-adaptor-like Toll interleukin-1-associated protein

NCC:

Neurocysticercosis

NO:

Nitric oxide

ODN:

Oligodeoxynucleotide

PAMP:

Pathogen-associated molecular pattern

PC:

Phosphorylcholine

PfEMP-1:

Plasmodium falciparum erythrocyte membrane protein 1

PFTG:

Profilin-like proteins of Toxoplasma gondii

PRR:

Pattern recognition receptor

RNI:

Reactive nitrogen intermediates

ROI:

Reactive oxygen intermediates

ROS:

Reactive oxygen species

Th1:

T-helper 1

Th2:

T-helper 2

Th3:

T-helper 3

TIR:

Toll interleukin-1 receptor

TLR:

Toll-like receptor

TRIF:

Toll-receptor-associated activator of interferons

TRAM:

Toll-receptor-associated molecule

VSG:

Variant-specific surface glycoproteins

References

  • Alvarez JI, Teale JM (2006) Breakdown of the blood brain barrier and blood-cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. J Neuroimmunol 173:45–55

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JI, Teale JM (2007a) Differential changes in junctional complex proteins suggest the ependymal lining as the main source of leukocyte infiltration into ventricles in murine neurocysticercosis. J Neuroimmunol 187:102–113

    Article  CAS  Google Scholar 

  • Alvarez JI, Teale JM (2007b) Evidence for differential changes of junctional complex proteins in murine neurocysticercosis dependent upon CNS vasculature. Brain Res 1169:98–111

    Article  CAS  Google Scholar 

  • Aosai F, Chen M, Kang HK, Mun HS, Norose K, Piao LX, Kobayashi M, Takeuchi O, Akira S, Yano A (2002) Toxoplasma gondii-derived heat shock protein HSP70 functions as a B cell mitogen. Cell Stress Chaperones 7:357–364

    Article  PubMed  CAS  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  PubMed  CAS  Google Scholar 

  • Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT, Sher A (2006) Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol 177:3515–3519

    PubMed  CAS  Google Scholar 

  • Bauer PR, Van Der Heyde HC, Sun G, Specian RD, Granger DN (2002) Regulation of endothelial cell adhesion molecule expression in an experimental model of cerebral malaria. Microcirculation 9:463–470

    PubMed  CAS  Google Scholar 

  • Black MW, Boothroyd JC (2000) Lytic cycle of Toxoplasma gondii. Microbiol Mol Biol Rev 64:607–623

    Article  PubMed  CAS  Google Scholar 

  • Bohne W, Heesemann J, Gross U (1994) Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion. Infect Immun 62:1761–1767

    PubMed  CAS  Google Scholar 

  • Bowie AG, Zhan J, Marshall WL (2004) Viral appropriation of apoptotic and NF-kappaB signaling pathways. J Cell Biochem 91:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Cai G, Radzanowski T, Villegas EN, Kastelein R, Hunter CA (2000) Identification of STAT4-dependent and independent mechanisms of resistance to Toxoplasma gondii. J Immunol 165:2619–2627

    PubMed  CAS  Google Scholar 

  • Cardona AE, Gonzalez PA, Teale JM (2003) CC chemokines mediate leukocyte trafficking into the central nervous system during murine neurocysticercosis: role of gamma delta T cells in amplification of the host immune response. Infect Immun 71:2634–2642

    Article  PubMed  CAS  Google Scholar 

  • Cardona AE, Restrepo BI, Jaramillo JM, Teale JM (1999) Development of an animal model for neurocysticercosis:immune response in the central nervous system is characterized by a predominance of gamma delta T cells. J Immunol 162:995–1002

    PubMed  CAS  Google Scholar 

  • Cardona AE, Teale JM (2002) Gamma/delta T cell-deficient mice exhibit reduced disease severity and decreased inflammatory response in the brain in murine neurocysticercosis. J Immunol 169:3163–3171

    PubMed  CAS  Google Scholar 

  • Chavarria A, Roger B, Fragoso G, Tapia G, Fleury A, Dumas M, Dessein A, Larralde C, Sciutto E (2003) TH2 profile in asymptomatic Taenia solium human neurocysticercosis. Microbes Infect 5:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201:19–25

    Article  PubMed  CAS  Google Scholar 

  • Coban C, Ishii KJ, Uematsu S, Arisue N, Sato S, Yamamoto M, Kawai T, Takeuchi O, Hisaeda H, Horii T, Akira S (2007) Pathological role of Toll-like receptor signaling in cerebral malaria. Int Immunol 19:67–79

    Article  PubMed  CAS  Google Scholar 

  • Cox FE (2002) History of human parasitology. Clin Microbiol Rev 15:595–612

    Article  PubMed  CAS  Google Scholar 

  • Daehnel K, Gillette-Ferguson I, Hise AG, Diaconu E, Harling MJ, Heinzel FP, Pearlman E (2007) Filaria/Wolbachia activation of dendritic cells and development of Th1-associated responses is dependent on Toll-like receptor 2 in a mouse model of ocular onchocerciasis (river blindness). Parasite Immunol 29:455–465

    Article  PubMed  CAS  Google Scholar 

  • Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende MG, Mansur DS, Weingart R, Schmidt RR, Golenbock DT, Gazzinelli RT, Schwarz RT (2007) Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. J Immunol 179:1129–1137

    PubMed  CAS  Google Scholar 

  • Del Rio L, Butcher BA, Bennouna S, Hieny S, Sher A, Denkers EY (2004) Toxoplasma gondii triggers myeloid differentiation factor 88-dependent IL-12 and chemokine ligand 2 (monocyte chemoattractant protein 1) responses using distinct parasite molecules and host receptors. J Immunol 172:6954–6960

    PubMed  Google Scholar 

  • Didierlaurent A, Ferrero I, Otten LA, Dubois B, Reinhardt M, Carlsen H, Blomhoff R, Akira S, Kraehenbuhl JP, Sirard JC (2004) Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. J Immunol 172:6922–6930

    PubMed  CAS  Google Scholar 

  • Dillon S, Agrawal A, Van Dyke T, Landreth G, McCauley L, Koh A, Maliszewski C, Akira S, Pulendran B (2004) A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J Immunol 172:4733–4743

    PubMed  CAS  Google Scholar 

  • Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, Kasprowicz DJ, Kellar K, Pare J, van Dyke T, Ziegler S, Unutmaz D, Pulendran B (2006) Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 116:916–928

    Article  PubMed  CAS  Google Scholar 

  • Drennan MB, Stijlemans B, Van den Abbeele J, Quesniaux VJ, Barkhuizen M, Brombacher F, De Baetselier P, Ryffel B, Magez S (2005) The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. J Immunol 175:2501–2509

    PubMed  CAS  Google Scholar 

  • Gay NJ, Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature 351:355–356

    Article  PubMed  CAS  Google Scholar 

  • Gazzinelli RT, Denkers EY (2006) Protozoan encounters with Toll-like receptor signalling pathways:implications for host parasitism. 6:895–906

    Google Scholar 

  • Gillette-Ferguson I, Daehnel K, Hise AG, Sun Y, Carlson E, Diaconu E, McGarry HF, Taylor MJ, Pearlman E (2007) Toll-like receptor 2 regulates CXC chemokine production and neutrophil recruitment to the cornea in Onchocerca volvulus/Wolbachia-induced keratitis. Infect Immun 75:5908–5915

    Article  PubMed  CAS  Google Scholar 

  • Gillette-Ferguson I, Hise AG, Sun Y, Diaconu E, McGarry HF, Taylor MJ, Pearlman E (2006) Wolbachia- and Onchocerca volvulus-induced keratitis (river blindness) is dependent on myeloid differentiation factor 88. Infect Immun 74:2442–2445

    Article  PubMed  CAS  Google Scholar 

  • Gitau EN, Newton CR (2005) Blood–brain barrier in falciparum malaria (review article). Trop Med Int Health 10:285–292

    Article  PubMed  CAS  Google Scholar 

  • Goodridge HS, Marshall FA, Wilson EH, Houston KM, Liew FY, Harnett MM, Harnett W (2004) In vivo exposure of murine dendritic cell and macrophage bone marrow progenitors to the phosphorylcholine-containing filarial nematode glycoprotein ES-62 polarizes their differentiation to an anti-inflammatory phenotype. Immunology 113:491–498

    Article  PubMed  CAS  Google Scholar 

  • Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu X, Tomai MA, Alkan SS, Vasilakos JP (2005) Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol 174:1259–1268

    PubMed  CAS  Google Scholar 

  • Griffith JW, O’Connor C, Bernard K, Town T, Goldstein DR, Bucala R (2007) Toll-like receptor modulation of murine cerebral malaria is dependent on the genetic background of the host. J Infect Dis 196:1553–1564

    Article  PubMed  CAS  Google Scholar 

  • Hall LR, Pearlman E (1999) Pathogenesis of onchocercal keratitis (river blindness). Clin Microbiol Rev 12:445–453

    PubMed  CAS  Google Scholar 

  • Halonen SK, Weiss LM (2000) Investigation into the mechanism of gamma interferon-mediated inhibition of Toxoplasma gondii in murine astrocytes. Infect Immun 68:3426–3430

    Article  PubMed  CAS  Google Scholar 

  • Harris TH, Cooney NM, Mansfield JM, Paulnock DM (2006) Signal transduction, gene transcription, and cytokine production triggered in macrophages by exposure to trypanosome DNA. Infect Immun 74:4530–4537

    Article  PubMed  CAS  Google Scholar 

  • Harris TH, Mansfield JM, Paulnock DM (2007) CpG oligodeoxynucleotide treatment enhances innate resistance and acquired immunity to African trypanosomes. Infect Immun 75:2366–2373

    Article  PubMed  CAS  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  PubMed  CAS  Google Scholar 

  • Hertz CJ, Filutowicz H, Mansfield JM (1998) Resistance to the African trypanosomes is IFN-gamma dependent. J Immunol 161:6775–6783

    PubMed  CAS  Google Scholar 

  • Hise AG, Daehnel K, Gillette-Ferguson I, Cho E, McGarry HF, Taylor MJ, Golenbock DT, Fitzgerald KA, Kazura JW, Pearlman E (2007) Innate immune responses to endosymbiotic Wolbachia bacteria in Brugia malayi and Onchocerca volvulus are dependent on TLR2, TLR6, MyD88, and Mal, but not TLR4, TRIF, or TRAM. J Immunol 178:1068–1076

    PubMed  CAS  Google Scholar 

  • Hise AG, Gillette-Ferguson I, Pearlman E (2003) Immunopathogenesis of Onchocerca volvulus keratitis (river blindness):a novel role for TLR4 and endosymbiotic Wolbachia bacteria. J Endotoxin Res 9:390–394

    PubMed  CAS  Google Scholar 

  • Hitziger N, Dellacasa I, Albiger B, Barragan A (2005) Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging. Cell Microbiol 7:837–848

    Article  PubMed  CAS  Google Scholar 

  • Hoerauf A, Brattig N (2002) Resistance and susceptibility in human onchocerciasis: beyond Th1 vs. Th2. Trends Parasitol 18:25–31

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  PubMed  CAS  Google Scholar 

  • Jankovic D, Kullberg MC, Hieny S, Caspar P, Collazo CM, Sher A (2002) In the absence of IL-12, CD4(+) T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10(−/−) setting. Immunity 16:429–439

    Article  PubMed  CAS  Google Scholar 

  • Johnson AC, Heinzel FP, Diaconu E, Sun Y, Hise AG, Golenbock D, Lass JH, Pearlman E (2005) Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci 46:589–595

    Article  PubMed  Google Scholar 

  • Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Gowda DC (2005) Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 280:8606–8616

    Article  PubMed  CAS  Google Scholar 

  • LaRosa DF, Stumhofer JS, Gelman AE, Rahman AH, Taylor DK, Hunter CA, Turka LA (2008) T cell expression of MyD88 is required for resistance to Toxoplasma gondii. Proc Natl Acad Sci USA 105:3855–3860

    Article  PubMed  CAS  Google Scholar 

  • Layland LE, Rad R, Wagner H, da Costa CU (2007) Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T cells primed in the presence of TLR2. Eur J Immunol 37:2174–2184

    Article  Google Scholar 

  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607

    Article  PubMed  CAS  Google Scholar 

  • Lekutis C, Ferguson DJ, Grigg ME, Camps M, Boothroyd JC (2001) Surface antigens of Toxoplasma gondii: variations on a theme. Int J Parasitol 31:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Lepenies B, Cramer JP, Burchard GD, Wagner H, Kirschning CJ, Jacobs T (2008) Induction of experimental cerebral malaria is independent of TLR2/4/9. Med Microbiol Immunol 197:39–44

    Article  PubMed  Google Scholar 

  • Leppert BJ, Mansfield JM, Paulnock DM (2007) The soluble variant surface glycoprotein of African trypanosomes is recognized by a macrophage scavenger receptor and induces I kappa B alpha degradation independently of TRAF6-mediated TLR signaling. J Immunol 179:548–556

    PubMed  CAS  Google Scholar 

  • Loharungsikul S, Troye-Blomberg M, Amoudruz P, Pichyangkul S, Yongvanitchit K, Looareesuwan S, Mahakunkijcharoen Y, Sarntivijai S, Khusmith S (2008) Expression of toll-like receptors on antigen-presenting cells in patients with falciparum malaria. Acta Trop 105:10–15

    Article  PubMed  CAS  Google Scholar 

  • McDermott EP, O’Neill LA (2002) Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1. J Biol Chem 277:7808–7815

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  • Minns LA, Menard LC, Foureau DM, Darche S, Ronet C, Mielcarz DW, Buzoni-Gatel D, Kasper LH (2006) TLR9 is required for the gut-associated lymphoid tissue response following oral infection of Toxoplasma gondii. J Immunol 176:7589–7597

    PubMed  CAS  Google Scholar 

  • Mishra BB, Gundra UM, Teale JM (2008) Expression and distribution of Toll-like receptors 11–13 in the brain during murine neurocysticercosis. J Neuroinflammation 5:53

    Article  PubMed  Google Scholar 

  • Mishra BB, Mishra PK, Teale JM (2006) Expression and distribution of Toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol 181:46–56

    Article  PubMed  CAS  Google Scholar 

  • Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh NR, Otchwemah RN, Dietz E, Ehrhardt S, Schroder NW, Bienzle U, Schumann RR (2006) Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci USA 103:177–182

    Article  PubMed  CAS  Google Scholar 

  • Mun HS, Aosai F, Norose K, Chen M, Piao LX, Takeuchi O, Akira S, Ishikura H, Yano A (2003) TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection. Int Immunol 15:1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH, Hartung T, Adema G, Kullberg BJ (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172:3712–3718

    PubMed  CAS  Google Scholar 

  • Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28:378–384

    Article  PubMed  CAS  Google Scholar 

  • Ockenhouse CF, Hu WC, Kester KE, Cummings JF, Stewart A, Heppner DG, Jedlicka AE, Scott AL, Wolfe ND, Vahey M, Burke DS (2006) Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect Immun 74:5561–5573

    Article  PubMed  CAS  Google Scholar 

  • Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, Halmen KA, Lamphier M, Olivier M, Bartholomeu DC, Gazzinelli RT, Golenbock DT (2007) Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 104:1919–1924

    Article  PubMed  CAS  Google Scholar 

  • Pichyangkul S, Yongvanitchit K, Kum-arb U, Hemmi H, Akira S, Krieg AM, Heppner DG, Stewart VA, Hasegawa H, Looareesuwan S, Shanks GD, Miller RS (2004) Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. J Immunol 172:4926–4933

    PubMed  CAS  Google Scholar 

  • Piggott DA, Eisenbarth SC, Xu L, Constant SL, Huleatt JW, Herrick CA, Bottomly K (2005) MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 115:459–467

    PubMed  CAS  Google Scholar 

  • Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, Soldati-Favre D (2008) Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 3:77–87

    Article  PubMed  CAS  Google Scholar 

  • Redecke V, Hacker H, Datta SK, Fermin A, Pitha PM, Broide DH, Raz E (2004) Cutting edge:activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 172:2739–2743

    PubMed  CAS  Google Scholar 

  • Reinitz DM, Mansfield JM (1988) Independent regulation of B cell responses to surface and subsurface epitopes of African trypanosome variable surface glycoproteins. J Immunol 141:620–626

    PubMed  CAS  Google Scholar 

  • Restrepo BI, Alvarez JI, Castano JA, Arias LF, Restrepo M, Trujillo J, Colegial CH, Teale JM (2001) Brain granulomas in neurocysticercosis patients are associated with a Th1 and Th2 profile. Infect Immun 69:4554–4560

    Article  PubMed  CAS  Google Scholar 

  • Restrepo BI, Llaguno P, Sandoval MA, Enciso JA, Teale JM (1998) Analysis of immune lesions in neurocysticercosis patients: central nervous system response to helminth appears Th1-like instead of Th2. J Neuroimmunol 89:64–72

    Article  PubMed  CAS  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95:588–593

    Article  PubMed  CAS  Google Scholar 

  • Ropert C, Franklin BS, Gazzinelli RT (2008) Role of TLRs/MyD88 in host resistance and pathogenesis during protozoan infection: lessons from malaria. Semin Immunopathol 30:41–51

    Article  PubMed  CAS  Google Scholar 

  • Saint Andre A, Blackwell NM, Hall LR, Hoerauf A, Brattig NW, Volkmann L, Taylor MJ, Ford L, Hise AG, Lass JH, Diaconu E, Pearlman E (2002) The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 295:1892–1895

    Article  PubMed  CAS  Google Scholar 

  • Sanni LA, Jarra W, Li C, Langhorne J (2004) Cerebral edema and cerebral hemorrhages in interleukin-10-deficient mice infected with Plasmodium chabaudi. Infect Immun 72:3054–3058

    Article  PubMed  CAS  Google Scholar 

  • Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, Denkers EY, Medzhitov R, Sher A (2002) Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol 168:5997–6001

    PubMed  CAS  Google Scholar 

  • Scharton-Kersten TM, Yap G, Magram J, Sher A (1997) Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 185:1261–1273

    Article  PubMed  CAS  Google Scholar 

  • Schleifer KW, Filutowicz H, Schopf LR, Mansfield JM (1993) Characterization of T helper cell responses to the trypanosome variant surface glycoprotein. J Immunol 150:2910–2919

    PubMed  CAS  Google Scholar 

  • Schofield L, Hackett F (1993) Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 177:145–153

    Article  PubMed  CAS  Google Scholar 

  • Schofield L, Hewitt MC, Evans K, Siomos MA, Seeberger PH (2002) Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418:785–789

    Article  PubMed  CAS  Google Scholar 

  • Schofield L, Novakovic S, Gerold P, Schwarz RT, McConville MJ, Tachado SD (1996) Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J Immunol 156:1886–1896

    PubMed  CAS  Google Scholar 

  • Sternberg JM (2004) Human African trypanosomiasis: clinical presentation and immune response. Parasite Immunol 26:469–476

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  • Taylor MJ, Hoerauf A (1999) Wolbachia bacteria of filarial nematodes. Parasitol Today 15:437–442

    Article  PubMed  CAS  Google Scholar 

  • Theodos CM, Reinitz DM, Mansfield JM (1990) Regulation of B cell responses to the variant surface glycoprotein (VSG) molecule in trypanosomiasis. I. Epitope specificity and idiotypic profile of monoclonal antibodies to the VSG of Trypanosoma brucei rhodesiense. J Immunol 144:4011–4021

    PubMed  CAS  Google Scholar 

  • Thomas PG, Carter MR, Atochina O, Da’Dara AA, Piskorska D, McGuire E, Harn DA (2003) Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J Immunol 171:5837–5841

    PubMed  CAS  Google Scholar 

  • Togbe D, Schofield L, Grau GE, Schnyder B, Boissay V, Charron S, Rose S, Beutler B, Quesniaux VF, Ryffel B (2007) Murine cerebral malaria development is independent of toll-like receptor signaling. Am J Pathol 170:1640–1648

    Article  PubMed  CAS  Google Scholar 

  • Tsan MF (2006) Toll-like receptors, inflammation and cancer. Semin Cancer Biol 16:32–37

    Article  PubMed  CAS  Google Scholar 

  • van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE (2006) A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol 22:503–508

    Article  PubMed  Google Scholar 

  • van der Kleij D, Latz E, Brouwers JF, Kruize YC, Schmitz M, Kurt-Jones EA, Espevik T, de Jong EC, Kapsenberg ML, Golenbock DT, Tielens AG, Yazdanbakhsh M (2002) A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J Biol Chem 277:48122–48129

    Article  PubMed  Google Scholar 

  • Vossenkamper A, Struck D, Alvarado-Esquivel C, Went T, Takeda K, Akira S, Pfeffer K, Alber G, Lochner M, Forster I, Liesenfeld O (2004) Both IL-12 and IL-18 contribute to small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii, but IL-12 is dominant over IL-18 in parasite control. Eur J Immunol 34:3197–3207

    Article  PubMed  Google Scholar 

  • White AC (1997) Neurocysticercosis: a major cause of neurological disease worldwide. Clin Infect Dis 24:101–113; quiz 114–105

    Article  PubMed  Google Scholar 

  • White AC (2000) Neurocysticercosis: updates on epidemiology, pathogenesis, diagnosis, and management. Annu Rev Med 51:187–206

    Article  PubMed  CAS  Google Scholar 

  • White AC Jr, Robinson P, Kuhn R (1997) Taenia solium cysticercosis: host-parasite interactions and the immune response. Chem Immunol 66:209–230

    Article  PubMed  Google Scholar 

  • Yano A, Mun HS, Chin M, Norose K, Hata K, Kobayashi M, Aosai F, Iwakura Y (2002) Roles of IFN-gamma on stage conversion of an obligate intracellular protozoan parasite, Toxoplasma gondii. Int Rev Immunol 21:405–421

    Article  PubMed  CAS  Google Scholar 

  • Yap GS, Sher A (1999) Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Immunobiology 201:240–247

    Article  PubMed  CAS  Google Scholar 

  • Yarovinsky F, Sher A (2006) Toll-like receptor recognition of Toxoplasma gondii. Int J Parasitol 36:255–259

    Article  PubMed  CAS  Google Scholar 

  • Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by awards NS 35974, AI 59703 and 1P01AI057986 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy M. Teale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mishra, B.B., Gundra, U.M., Teale, J.M. (2009). Toll-Like Receptors in CNS Parasitic Infections. In: Kielian, T. (eds) Toll-like Receptors: Roles in Infection and Neuropathology. Current Topics in Microbiology and Immunology, vol 336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00549-7_5

Download citation

Publish with us

Policies and ethics