Skip to main content

Universalities in Cellular Automata*

  • Reference work entry

Abstract

This chapter is dedicated to computational universalities in cellular automata, essentially Turing universality, the ability to compute any recursive function, and intrinsic universality, the ability to simulate any other cellular automaton. Constructions of Boolean circuits simulation in the two-dimensional case are explained in detail to achieve both kinds of universality. A detailed chronology of seminal papers is given, followed by a brief discussion of the formalization of universalities. The more difficult one-dimensional case is then discussed. Seminal universal cellular automata and encoding techniques are presented in both dimensions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    *A preliminary version of this work appeared under the title Universalities in Cellular Automata: A (Short) Survey in the proceedings of the first edition of the JAC conference (Ollinger 2008).

References

  • Albert J, Čulik II K (1987) A simple universal cellular automaton and its one-way and totalistic version. Complex Syst 1(1):1–16

    MATH  Google Scholar 

  • Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J Comput Syst Sci 6:448–464

    Article  MathSciNet  MATH  Google Scholar 

  • Arbib MA (1966) Simple self-reproducing universal automata. Info Control 9(2):177–189

    Article  MATH  Google Scholar 

  • Banks ER (1970) Universality in cellular automata. In: Symposium on switching and automata theory, Santa Monica, 1970. IEEE, New York, pp 194–215

    Google Scholar 

  • Banks ER (1971) Information processing and transmission in cellular automata. Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Bartlett R, Garzon M (1993) Monomial cellular automata. Complex Syst 7(5):367–388

    MathSciNet  MATH  Google Scholar 

  • Bartlett R, Garzon M (1995) Bilinear cellular automata. Complex Syst 9(6):455–476

    MathSciNet  MATH  Google Scholar 

  • Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17(6):525–532

    Article  MATH  Google Scholar 

  • Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays, vol 2, Games in particular. Academic Press [Harcourt Brace Jovanovich Publishers], London

    Google Scholar 

  • Burks AW (1970a) Von Neumann's self-reproducing automata. In: Burks AW (ed) Essays on cellular automata. University of Illinois Press, Urbana, IL, pp 3–64 (Essay one)

    Google Scholar 

  • Burks AW (1970b) Programming and the theory of automata. In: Burks AW (ed) Essays on cellular automata. University of Illinois Press, Urbana, IL, pp 65–83 (Essay two)

    Google Scholar 

  • Burks AW (1970c) Towards a theory of automata based on more realistic primitive elements. In: Burks AW (ed) Essays on cellular automata. University of Illinois Press, Urbana, IL, pp 84–102 (Essay three)

    Google Scholar 

  • Cocke J, Minsky M (1964) Universality of tag systems with p=2. J ACM 11(1):15–20

    Article  MathSciNet  MATH  Google Scholar 

  • Codd EF (1968) Cellular automata. Academic Press, New York

    MATH  Google Scholar 

  • Cook M (2004) Universality in elementary cellular automata. Complex Syst 15:1–40

    MATH  Google Scholar 

  • Davis MD (1956) A note on universal turing machines. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, NJ, pp 167–175

    Google Scholar 

  • Davis MD (2000) The universal computer: The road from Leibniz to Turing. W.W. Norton, New York

    Google Scholar 

  • Delorme M (1999) An introduction to cellular automata: some basic definitions and concepts. In: Delorme M, Mazoyer J (eds) Cellular automata (Saissac, 1996). Kluwer, Dordrecht, pp 5–49

    Google Scholar 

  • Delvenne J, Kurka P, Blondel VD (2006) Decidability and universality in symbolic dynamical systems. Fundam Info 74(4):463–490

    MathSciNet  MATH  Google Scholar 

  • Dewdney AK (1990) The cellular automata programs that create Wireworld, Rugworld and other diversions. Sci Am 262:146–149

    Article  Google Scholar 

  • Dubacq JC (1995) How to simulate Turing machines by invertible one-dimensional cellular automata. Int J Found Comput Sci 6(4):395–402

    Article  MATH  Google Scholar 

  • Durand B, Róka Z (1999) The Game of Life: universality revisited. In: Delorme M, Mazoyer J (eds) Cellular automata (Saissac, 1996). Kluwer, Dordrecht, pp 51–74

    Google Scholar 

  • Durand-Lose J (1995) Reversible cellular automaton able to simulate any other reversible one using partitioning automata. In: Baeza-Yates RA, Goles E, Poblete PB (eds) LATIN '95, Valparaiso, 1995. Lecture notes in computer science, vol 911. Springer, Berlin/New York, pp 230–244

    Google Scholar 

  • Durand-Lose J (1996) Automates cellulaires, automates partitions et tas de sable. Ph.D. thesis, Université Bordeaux I

    Google Scholar 

  • Durand-Lose J (1997) Intrinsic universality of a 1-dimensional reversible cellular automaton. In: STACS 97 (Lübeck), Lecture notes in computer science, vol 1200. Springer, Berlin, pp 439–450

    Google Scholar 

  • Fischer PC (1965) On formalisms for Turing machines. J ACM 12(4):570–580

    Article  MATH  Google Scholar 

  • Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253

    Article  MathSciNet  MATH  Google Scholar 

  • Gajardo A, Ch EG (2001) Universal cellular automaton over a hexagonal tiling with 3 states. IJAC 11(3):335–354

    MATH  Google Scholar 

  • Gardner M (1970) Mathematical games: The fantastic combinations of John Conway's new solitaire game ‘Life’. Sci Am 223(4):120–123

    Article  Google Scholar 

  • Gödel K (1931) Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38:173–198. Reprinted in Feferman S, Dawson W, Kleene SC, Moore G, Solovay RM, van Heijendort J (eds) (1986) Kurt Gödel: Collected works, vol 1. Oxford University Press, Oxford, pp 144–195

    Article  Google Scholar 

  • Golly Gang: Golly version 2.0 (2008) An open-source, cross-platform application for exploring the Game of Life and other cellular automata. http://golly.sf.net/

  • Hedlund GA (1969) Endormorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375

    Article  MathSciNet  MATH  Google Scholar 

  • Hertling P (1998) Embedding cellular automata into reversible ones. In: Calude CS, Casti J, Dinneen MJ (eds) Unconventional models of computation. Springer

    Google Scholar 

  • Imai K, Morita K (2000) A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theor Comput Sci 231(2):181–191

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (1990) Reversibility of 2D cellular automata is undecidable. Phys D. Nonlinear Phenomena 45(1–3):379–385. Cellular automata: theory and experiment, Los Alamos, NM, 1989

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comput Syst Sci 48(1):149–182

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (2005) Theory of cellular automata: a survey. Theor Comput Sci 334:3–33

    Article  MathSciNet  MATH  Google Scholar 

  • Kleene SC (1956) Representation of events in nerve nets and finite automata. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, NJ, pp 3–41

    Google Scholar 

  • Lafitte G (2008) Gödel incompleteness revisited. In: Durand B (ed) Symposium on cellular automata journes automates cellulaires, JAC'2008, Uzès, 2008. MCCME, Moscow, pp 74–89

    Google Scholar 

  • Langton C (1984) Self-reproduction in cellular automata. Phys D 10(1–2):135–144

    Article  Google Scholar 

  • Lecerf Y (1963) Machines de Turing réversibles. C R Acad Sci Paris 257:2597–2600

    MathSciNet  Google Scholar 

  • Lindgren K, Nordahl MG (1990) Universal computation in simple one-dimensional cellular automata. Complex Syst 4(3):299–318

    MathSciNet  MATH  Google Scholar 

  • Margolus N (1984) Physics-like models of computation. Phys D 10:81–95

    Article  MathSciNet  Google Scholar 

  • Martin B (1993) Construction modulaire d'automates cellulaires. Ph.D. thesis, École Normale Supérieure de Lyon

    Google Scholar 

  • Martin B (1994) A universal cellular automaton in quasilinear time and its S-m-n form. Theor Comput Sci 123(2):199–237

    Article  MATH  Google Scholar 

  • Mazoyer J (1996) Computations on one dimensional cellular automata. Ann Math Artif Intell 16: 285–309

    Article  MathSciNet  MATH  Google Scholar 

  • Mazoyer J (1999) Computations on grids. In: Cellular automata (Saissac, 1996). Kluwer, Dordrecht, pp 119–149

    Google Scholar 

  • Mazoyer J, Rapaport I (1999) Inducing an order on cellular automata by a grouping operation. Discrete Appl Math 91(1–3):177–196

    Article  MathSciNet  MATH  Google Scholar 

  • Mazoyer J, Terrier V (1999) Signals in one-dimensional cellular automata. Theor Comput Sci 217(1):53–80. Cellular automata, Milan, 1996

    Article  MathSciNet  MATH  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  MATH  Google Scholar 

  • Miller DB, Fredkin E (2005) Two-state, reversible, universal cellular automata in three dimensions. In: Bagherzadeh N, Valero M, Ramírez A (eds) Proceedings of the conference on computing frontiers, Ischia, pp 45–51. ACM

    Chapter  Google Scholar 

  • Minsky M (1967) Computation: finite and infinite machines. Prentice Hall, Englewoods Cliffs, NJ

    MATH  Google Scholar 

  • Moore EF (1962) Machine models of self-reproduction. In: Proceedings of symposia in applied mathematics, vol 14, 1962. American Mathematical Society, Providence, pp 17–33

    Google Scholar 

  • Moore EF (1970) Machine models of self-reproduction. In: Burks AW (ed) Essays on cellular automata. University of Illinois Press, Urbana, IL, pp 187–203 (Essay six)

    Google Scholar 

  • Moreira A (2003) Universality and decidability of number-conserving cellular automata. Theor Comput Sci 292(3):711–721

    Article  MathSciNet  MATH  Google Scholar 

  • Morita K (1990) A simple construction method of a reversible finite automaton out of Fredkin gates, and its related problem. IEICE Trans Info Syst E73(6):978–984

    Google Scholar 

  • Morita K (1995) Reversible simulation of one-dimensional irreversible cellular automata. Theor Comput Sci 148(1):157–163

    Article  MATH  Google Scholar 

  • Morita K, Harao M (1989) Computation universality of one-dimensional reversible (injective) cellular automata. IEICE Trans Info Syst E72:758–762

    Google Scholar 

  • Morita K, Imai K (1996) Self-reproduction in a reversible cellular space. Theor Comput Sci 168(2):337–366

    Article  MathSciNet  MATH  Google Scholar 

  • Morita K, Imai K (2001) Number-conserving reversible cellular automata and their computation-universality. Theor Info Appl 35(3):239–258

    Article  MathSciNet  MATH  Google Scholar 

  • Neary T, Woods D (2006) P-completeness of cellular automaton rule 110. In: Proceedings of ICALP 2006, Venice. Lecture notes in Computer science, vol 4051. Springer, Berlin, pp 132–143

    Google Scholar 

  • von Neumann J (1966) In: Burks AW (ed) Theory of self-reproducing automata. University of Illinois Press, Urbana, IL

    Google Scholar 

  • Noural F, Kashef R (1975) A universal four-state cellular computer. IEEE Trans Comput 24(8):766–776

    Article  Google Scholar 

  • Odifreddi PG (1989) Classical recursion theory. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Ollinger N (2001) Two-states bilinear intrinsically universal cellular automata. In: Freivalds R (ed) Fundamentals of computation theory, Riga, 2001. Lecture notes in computer science, vol 2138. Springer, Berlin, pp 396–399

    Chapter  Google Scholar 

  • Ollinger N (2002a) Automates cellulaires: structures. Ph.D. thesis, École Normale Supérieure de Lyon

    Google Scholar 

  • Ollinger N (2002b) The quest for small universal cellular automata. In: Widmayer P, Triguero F, Morales R, Hennessy M, Eidenbenz S, Conejo R (eds) International colloquium on automata, languages and programming, (Málaga, 2002). Lecture notes in computer science, vol 2380. Springer, Berlin, pp 318–329

    Chapter  Google Scholar 

  • Ollinger N (2003) The intrinsic universality problem of one-dimensional cellular automata. In: Symposium on theoretical aspects of computer science, Berlin, 2003. Lecture notes in computer science. Springer, Berlin, doi:10.1007/3-540-36494-3_55

    Google Scholar 

  • Ollinger N (2008) Universalities in cellular automata: a (short) survey. In: Durand B (ed) Symposium on cellular automata journes automates cellulaires, JAC'2008, Uz̀es. MCCME, Moscow, pp 102–118

    Google Scholar 

  • Ollinger N, Richard G (2008) A particular universal cellular automaton. In: Neary T, Woods D, Seda AK, Murphy N (eds) CSP. Cork University Press, Cork, Ireland

    Google Scholar 

  • Perrin D (1995) Les débuts de la théorie des automates. Tech Sci Info 14:409–433

    MathSciNet  Google Scholar 

  • Post E (1941) The two-valued iterative systems of mathematical logic. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  • Post E (1943) Formal reductions of the general combinatorial decision problem. Am J Math 65(2):197–215

    Article  MathSciNet  MATH  Google Scholar 

  • Rapaport I (1998) Inducing an order on cellular automata by a grouping operation. Ph.D. thesis, École Normale Supérieure de Lyon

    Google Scholar 

  • Richard G (2008) Rule 110: Universality and catenations. In: Durand B (ed) Symposium on cellular automata journes automates cellulaires, JAC'2008, Uz̀es. MCCME, Moscow, pp 141–160

    Google Scholar 

  • Richardson D (1972) Tessellations with local transformations. J Comput Syst Sci 6:373–388

    Article  MATH  Google Scholar 

  • Shannon CE (1956) A universal Turing machine with two internal states. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, NJ, pp 157–165

    Google Scholar 

  • Smith AR III (1971) Simple computation-universal cellular spaces. J ACM 18:339–353

    Article  MATH  Google Scholar 

  • Sutner K (2004) Universality and cellular automata. In: Margenstern M (ed) MCU 2004, Saint-Petersburg, 2004. Lecture notes in computer science, vol 3354. Springer, Berlin/Heidelberg, pp 50–59

    Google Scholar 

  • Thatcher JW (1970a) Self-describing Turing machines and self-reproducing cellular automata. In: Burks AW (ed) Essays on cellular automata. University of Illinois Press, Urbana, IL, pp 103–131 (Essay four)

    Google Scholar 

  • Thatcher JW (1970b) Universality in the von Neumann cellular model. In: Burks AW (ed) Essays on cellular automata. University of Illinois Press, Urbana, IL, pp 132–186 (Essay five)

    Google Scholar 

  • Theyssier G (2005a) Automates cellulaires: un modèle de complexités. Ph.D. thesis, École Normale Supérieure de Lyon

    Google Scholar 

  • Theyssier G (2005b) How common can be universality for cellular automata? In: STACS 2005, Stuttgart, 2005. Lecture notes in computer science, vol 3404. Springer, Berlin/Heidelberg, pp 121–132

    Google Scholar 

  • Toffoli T (1977) Computation and construction universality of reversible cellular automata. J Comput Syst Sci 15(2):213–231

    Article  MathSciNet  MATH  Google Scholar 

  • Turing AM (1936) On computable numbers with an application to the Entscheidungsproblem. Proc Lond Math Soc 42(2):230–265

    MathSciNet  Google Scholar 

  • Wolfram S (1984) Universality and complexity in cellular automata. Phys D Nonlinear Phenomena 10(1–2):1–35. Cellular automata: Los Alamos, NM, 1983

    Article  MathSciNet  Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media, Champaign, IL

    MATH  Google Scholar 

  • Woods D, Neary T (2006) On the time complexity of 2-tag systems and small universal Turing machines. In: FOCS 2006, Berkeley, 2006. IEEE Computer Society, Washington, DC, pp 439–448

    Google Scholar 

  • Woods D, Neary T (2007) The complexity of small universal Turing machines. In: Cooper SB, Löwe B, Sorbi A (eds) Computability in Europe, CiE 2007, Siena, 2007. Lecture notes in computer science, vol 4497. Springer, Berlin/Heidelberg, pp 791–799

    Google Scholar 

Download references

Acknowledgment

The author would like to thank G. Richard for providing and preparing figures to illustrate both rule 110 and the 4-state intrinsically universal cellular automaton.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ollinger, N. (2012). Universalities in Cellular Automata*. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_6

Download citation

Publish with us

Policies and ethics