Skip to main content

Network-Related Challenges and Insights from Neuroscience

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5151))

Abstract

At nearly every spatio-temporal scale and level of integration, the brain may be studied as a network of nearly unrivaled complexity. The network perspective provides valuable insights into the structure and function of the brain. In turn, the structure and function of the brain provide insights into the nature and capabilities of networks. As a consequence, neuroscience provides a rich offering of network-related challenges and insights for those designing networks to solve complex problems. This paper explores techniques for extracting and characterizing the networks of the brain, classification of brain function based on networks derived from fMRI, and specific challenges, such as the disambiguation of classification network representations, and functional self-organization of cortical networks. This exploration visits theory and data driven neural system modeling validated respectively by capabilities and biological experiments, analysis of biological data, and theoretical analysis of static networks. Finally, techniques that build upon the network perspective are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anwar, H., Riachi, I., Hill, S., Schürmann, F., Markram, H.: Capturing neuron morphological diversity. In: De Schutter, E. (ed.) Computational Neuroscience: Realistic Modeling for Experimentalists, 2nd edn. (to appear, 2008)

    Google Scholar 

  2. Bednar, J.A., Miikkulainen, R.: Neurocomputing 52-54, 473–480 (2003)

    Google Scholar 

  3. Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  4. Cecchi, G.A., et al.: Identifying directed links in large scale functional networks: application to brain fMRI. BMC Cell Biology 8(suppl. 1), 5 (2007)

    Article  Google Scholar 

  5. Doya, K., Kimura, H., Kawato, M.: Neural Mechanisms of Learning and Control. IEEE Control Systems Magazine, 42–54 (August 2001)

    Google Scholar 

  6. Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., Segev, I.: A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience 1, 1 (2007)

    Google Scholar 

  7. Eguiluz, V.M., et al.: Scale-free functional brain networks. Physical Review Letters 94, 018102 (2005)

    Article  Google Scholar 

  8. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping Volume 2(4), 189–210 (2004)

    Article  Google Scholar 

  9. Gray, C.M., Singer, W.: Proc. Natl. Acad. Sci. USA 86, 1698–1702 (1989)

    Google Scholar 

  10. Greicius, M.D., et al.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. PNAS 100, 253–258 (2003)

    Article  Google Scholar 

  11. Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D., Wiesel, T.N.: Nature 324(6095), 361–364 (1986)

    Google Scholar 

  12. Bonhoeffer, T., Grinvald, A.: Nature 353, 429–431 (1991)

    Google Scholar 

  13. Hikosaka, O., et al.: Neurobiology of Learning and Memory 70, 127–149 (1998)

    Google Scholar 

  14. Hill, S.L., Chapochnikov, N., Druckmann, S., Gidon, A., Hay, E., Mace, A., Ramaswamy, R., Ranjan, R., Riachi, I., Schürmann, F., Srinivisan, K., Tränkler, T., Markram, H.: The Blue Brain Project: Calibrating a model of the neocortical column. Program 752.17. In: 2007 Neuroscience Meeting Planner, Society for Neuroscience, San Diego (2007)

    Google Scholar 

  15. Kandel, E.R., Schwartz, J.H., Jessup, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  16. Koch, C., Segev, I. (eds.): Methods in Neuronal Modeling: From Ions to Networks, 2nd edn. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Kozloski, J., Hamzei-Sichani, F., Yuste, R.: Stereotyped Position of Local Synaptic Targets in Neocortex. Science 293(5531), 868–872 (2001)

    Article  Google Scholar 

  18. Kozloski, J., Cecchi, G.A., Peck, C.C., Rao, A.R.: Topographic Infomax in a Neural Multigrid. ISNN (2), 500–509 (2007)

    Google Scholar 

  19. Kozloski, J., Sfyrakis, K., Hill, S., Schürmann, F., Markram, H.: Identifying, tabulating, and analyzing contacts between branched neuron morphologies. IBM Journal special issue on Applications of Massively Parallel Systems (to appear, 2008)

    Google Scholar 

  20. Kwong, K.K., et al.: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675–5679 (1992)

    Article  Google Scholar 

  21. Linsker, R.: From Basic Network Principles to Neural Architecture: Emergence of Orientation Columns. PNAS 83, 8779–8783 (1986)

    Article  Google Scholar 

  22. Linsker, R.: Local synaptic learning rules suffice to maximise mutual information in a linear network. Neural Computation 4, 691–702 (1992)

    Article  Google Scholar 

  23. Linsker, R.: A local learning rule that enables information maximization for arbitrary input distributions. Neural Computation 9, 1661–1665 (1997)

    Article  Google Scholar 

  24. Von der Malsburg, C.: The what and why of binding: The modeler’s perspective. Neuron, 95–104 (1999)

    Google Scholar 

  25. Markram, H., Lübke, J., Frotscher, M., Roth, A., Sakmann, B.: Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500(Pt 2), 409–440 (1997)

    Article  Google Scholar 

  26. Markram, H.: The Blue Brain Project. Nat. Rev. Neurosci. 7(2), 153–160 (2006)

    Article  MathSciNet  Google Scholar 

  27. Newman, E.J.: The structure and function of complex networks. SIAM Rev. 45, 167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Obermayer, K., Sejnowski, T. (eds.): Self-Organizing Map Formation: Foundations of Neural Computation. MIT Press, Cambridge (2001)

    Google Scholar 

  29. Ogawa, S., Lee, T.-M., Nayak, A.S., Glynn, P.: Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 68–78 (1990)

    Article  Google Scholar 

  30. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868–9872 (1990)

    Article  Google Scholar 

  31. Peck, C.C., Kozloski, J., Cecchi, G., Rao, A.R.: A Biologically Motivated Classifier that Preserves Implicit Relationship Information in Layered Networks. In: Ribeiro, et al. (eds.) Adaptive and Natural Computing Algorithms: Proc. of the Int. Conf. in Coimbra, Portugal. Springer, Berlin (2005)

    Google Scholar 

  32. Ranjan, R., Druckmann, S., Gidon, A., Goodman, P., Hay, E., Hill, S.L., Ramaswamy, S., Schürmann, F., Markram, H.: The Blue Brain Project: Capturing parameters from genetically-prescribed ion channels for neuron modeling. In: Program 752.15. Neuroscience Meeting Planner, Society for Neuroscience, San Diego (2007) Online

    Google Scholar 

  33. Rao, A.R., Cecchi, G.A., Peck, C.C., Kozloski, J.R.: Unsupervised segmentation with dynamical units. IEEE Transactions on Neural Networks (January 2008)

    Google Scholar 

  34. Rosenblatt, F.: Principles of Neurodynamics: Perception and the Theory of Brain Mechanisms. Spartan Books, Washington (1962)

    MATH  Google Scholar 

  35. Seth, A.K., McKinstry, J.L., Edelman, G.M., Krichmar, J.L.: Cerebral Cortex May 13 Advanced access (2004)

    Google Scholar 

  36. Silberberg, G., Markram, H.: Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53(5), 735–746 (2007)

    Article  Google Scholar 

  37. SPM from the Wellcome Department of Cognitive Neurology, http://www.fil.ion.ucl.ac.uk/SPM

  38. Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2(4), 229–239 (2001)

    Article  Google Scholar 

  39. Watts, D.J., Strogatz, S.J.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peck, C. et al. (2008). Network-Related Challenges and Insights from Neuroscience. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds) Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol 5151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92191-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92191-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92190-5

  • Online ISBN: 978-3-540-92191-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics