Skip to main content

The Hamiltonian Number of Cubic Graphs

  • Conference paper
Computational Geometry and Graph Theory (KyotoCGGT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4535))

Abstract

A Hamiltonian walk in a connected graph G of order n is a closed spanning walk of minimum length in G. The Hamiltonian number h(G) of a connected graph G is the length of a Hamiltonian walk in G. Thus h may be considered as a measure of how far a given graph is from being Hamiltonian. We prove that if G runs over the set of connected cubic graphs of order n and \(n\not= 14\) then the values h(G) completely cover a line segment [a,b] of positive integers. For an even integer n ≥ 4, let \(\mathcal{C}(3^n)\) be the set of all connected cubic graphs of order n. We define \(\min(h, 3^n)=\min\{h(G):G\in \mathcal{C}(3^n)\}\) and \(\max(h, 3^n)=\max\{h(G):G\in \mathcal{C}(3^n)\}\). Thus for an even integer n ≥ 4, the two invariants min (h, 3n) and max (h, 3n) naturally arise. Evidently, min (h, 3n) = n. The exact values of max (h, 3n) are obtained in all situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alspach, B.R.: The classification of Hamiltonian gerneralized Petersen graphs. J. Comb. Th. 34, 293–312 (1983)

    Article  MATH  Google Scholar 

  2. Asano, T., Nishizeki, T., Watanabe, T.: An upper bound on the length of a Hamiltonian walk of a maximal planar graph. J. Graph Theory. 4, 315–336 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asano, T., Nishizeki, T., Watanabe, T.: An approximation algorithm for the Hamiltonian walk problems on maximal planar graphs. Discrete Appl. Math. 5, 211–222 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bermond, J.C.: On Hamiltonian walks. Congr. Numer. 15, 41–51 (1976)

    MATH  Google Scholar 

  5. Chartrand, G., Thomas, T., Saenpholphat, V., Zhang, P.: A new look at Hamiltonian walks. Bull. Inst. Combin. Appl. 42, 37–52 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Goodman, S.E., Hedetniemi, S.T.: On Hamiltonian walks in graphs. SIAM J. Comput. 3, 214–221 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Petersen, J.: Die Theorie der regulären Graphen. Acta Math. 15, 193–220 (1891)

    Article  MathSciNet  Google Scholar 

  8. Punnim, N., Seanpholphat, V., Thaithae, S.: Almost Hamiltonian Cubic Graphs. International Journal of Computer Science and Network Security 7(1), 83–86 (2007)

    Google Scholar 

  9. Schönberger, T.: Ein Beweis des Petersenschen Graphensatzes. Acta Scienyia Mathematica szeged 7, 51–57 (1934)

    MATH  Google Scholar 

  10. Steinbach, P.: field guide to SIMPLE GRAPHS 1. 2nd revised edition, Educational Ideas & Materials Albuquerque (1999)

    Google Scholar 

  11. Vacek, P.: On open Hamiltonian walks in graphs. Arch. Math (Brno) 27A, 105–111 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thaithae, S., Punnim, N. (2008). The Hamiltonian Number of Cubic Graphs. In: Ito, H., Kano, M., Katoh, N., Uno, Y. (eds) Computational Geometry and Graph Theory. KyotoCGGT 2007. Lecture Notes in Computer Science, vol 4535. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89550-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89550-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89549-7

  • Online ISBN: 978-3-540-89550-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics