Skip to main content

A Miniature Vehicle with Extended Aerial and Terrestrial Mobility

  • Chapter
  • First Online:

Abstract

This chapter describes the design, fabrication, and field testing of a small robot (30.5 cm wingspan and 30.5 cm length) capable of motion in both aerial and terrestrial mediums. The micro-air–land vehicle (MALV) implements abstracted biological inspiration in both flying and walking mechanisms for locomotion and transition between modes of operation. The propeller-driven robot employs an undercambered, chord-wise compliant wing to achieve improved aerial stability over rigid-wing micro-air vehicles (MAVs) of similar size. Flight maneuverability is provided through elevator and rudder control. MALV lands and walks on the ground using an animal-inspired passively compliant wheel-leg running gear that enables the robot to crawl and climb, including surmounting obstacles larger than its own height. Turning is accomplished through differential activation of wheel-legs. The vehicle successfully performs the transition from flight to walking and is able to transition from terrestrial to aerial locomotion by propeller thrust on a smooth horizontal surface or by walking off a vertical surface higher than 6 m. Fabricated of lightweight carbon fiber the ~100 g vehicle is capable of flying, landing, and crawling with a payload exceeding 20% its own mass. To our knowledge MALV is the first successful vehicle at this scale to be capable of both aerial and terrestrial locomotion in real-world terrains and smooth transitions between the two.

Video of the robot during field testing may be observed at: http://faculty.nps.edu/ravi/BioRobotics/Projects.htm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Initial performance specifications also called for a wingspan <33 cm for device portability.

References

  1. Ifju, P.G., Ettinger, S., Jenkins, D.A., Lian, Y., Shyy, W., Waszak, M.R.: Flexible-Wing-Based Micro Air Vehicles, 40th AIAA Aerospace Sciences Meeting, Reno, NV AIAA 2002-0705 (January 2002)

    Google Scholar 

  2. Morrey, J.M., Lambrecht, B., Horchler, A.D., Ritzmann, R.E., and Quinn, R.D.: Highly Mobile and Robust Small Quadruped Robots. IEEE Int. Conf. On Intelligent Robots and Systems (IROS’03), Las Vegas, Nevada, Vol. 1, pp. 82–87 (2003)

    Google Scholar 

  3. Morasso, P., Bottaro, A., Casadio, M., Sanguineti, V.: Preflexes and internal models in biomimetic robot systems. Cognitive Process 6, 25–36 (2005)

    Article  Google Scholar 

  4. Alexander, R.McN.: Three Uses for Springs in Legged Locomotion. International Journal of Robotics Research 9, 2 (1990)

    Article  Google Scholar 

  5. Shyy, W., Berg, M., Ljungqvist, D.: Flapping and Flexible Wings for Biological and Micro Vehicles. Process in Aerospace Sciences 35(5), 455–506 (1999)

    Article  Google Scholar 

  6. Loeb, G.E., Brown, I.E., Cheng, E.J.: A hierarchical foundation for models of sensorimotor control. Experimental Brain Research. 126, 1–18 (1999)

    Article  Google Scholar 

  7. Jindrich, D.L., Full, R.J.: Dynamic stabilization of rapid hexapedal locomotion. Journal of Experimental Biology 205, 2803–2823 (2002)

    Google Scholar 

  8. Brown, I.E., Loeb, G.E.: A reductionist approach to creating and using neuromusculoskeletal models. In: J.M. Winters, P.E. Crago (eds.) Biomechanics and neural control of movement. Springer, Berlin Heidelberg New York, pp. 148–163 (1997)

    Google Scholar 

  9. Quinn, R.D., Nelson, G.M., Ritzmann, R.E., Bachmann, R.J., Kingsley, D.A., Offi, J.T., Allen, T.J.: Parallel Strategies For Implementing Biological Principles Into Mobile Robots. International Journal of Robotics Research 22(3), 169–186 (2003)

    Article  Google Scholar 

  10. Saranli, U., Buehler, M., Koditschek, D.: RHex a simple and highly mobile hexapod robot. International Journal of Robotics Research 20(7), 616–631 (2001)

    Article  Google Scholar 

  11. Stoeter, S.A., Rybski, P.E., Gini, M., Papanikolopoulos, N.: Autonomous Stair-Hopping with Scout Robots. Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS’02), pp. 721–726, Lausanne, Switzerland (September/October 2002)

    Google Scholar 

  12. Morrey, J.M., Lambrecht, B., Horchler, A.D., Ritzmann, R.E., Quinn, R.D.: Highly Mobile and Robust Small Quadruped Robots. IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas (2003)

    Google Scholar 

  13. Kovac, M., Fuchs, M., Guignard, A., Zufferey, J.-C., Floreano, D.: A miniature 7 g jumping robot. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’2008), pp. 373–378, (2008)

    Google Scholar 

  14. Daltorio K.A., Gorb, S., Peressadko, A., Horchler, A.D., Ritzmann, R.E., Quinn, R.D.: A Robot that Climbs Walls using Micro-structured Polymer Feet. International Conference on Climbing and Walking Robots (CLAWAR), London, U.K. (September 13–15, 2005)

    Google Scholar 

  15. Kim, S., Asbeck, A., Provancher, W., Cutkosky, M.R.: SpinybotII: Climbing Hard Walls with Compliant Microspines. Proceedings of the IEEE International Conference on Autonomous Robots, Seattle, WA (July, 18–20, 2005)

    Google Scholar 

  16. K-TEAM SA HEADQUARTERS SWITZERLAND Chemin du Vuasset, CP 111, 1028 Préverenges, SWITZERLAND

    Google Scholar 

  17. Bererton, C., Navarro-Serment, L.E., Grabowski, R., Paredis, C.J.J., Khosla, P.K.: Millibots: Small Distributed Robots for Surveillance and Mapping. Government Microcircuit Applications Conference, pp. 20–23 (March 2000)

    Google Scholar 

  18. Fukui, R., Torii, A., Ueda, A.: Micro robot actuated by rapid deformation of piezoelectric elements. Proceedings 2001 International Symposium on Micromechatronics and Human Science, (MHS 2001), pp 117–22 (2001)

    Google Scholar 

  19. Birch, M.C., Quinn, R.D., Ritzmann, R.E., Pollack, A.J., Philips, S.M.: Micro-robots inspired by crickets. Proceedings of Climbing and Walking Robots Conference (CLAWAR’02). Paris, France (2002)

    Google Scholar 

  20. Clark, J.E., Cham, J.G., Bailey, S.A., Froehlich, E.M., Nahata, P.K., Full, R.J., Cutkosky, M.R.: Biomimetic design and fabrication of a hexapedal running robot. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation 4, 3643–3649 (2001)

    Google Scholar 

  21. Allen, T.J., Quinn, R.D., Bachmann, R.J., Ritzmann, R.E.: Abstracted Biological Principles Applied with Reduced Actuation Improve Mobility of Legged Vehicles. Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS ’03), V.2, pp. 1370–1375. Las Vegas, USA (2003)

    Google Scholar 

  22. Morrey, J.M., Horchler, A.D., Didona, N., Lambrecht, B., Ritzmann, R.E., Quinn, R.D.: Increasing Small Robot Mobility Via Abstracted Biological Inspiration. IEEE International Conference on Robotics and Automation (ICRA’03) Video Proceedings. Taiwan (2003)

    Google Scholar 

  23. Kim, S., Clark, J.E., Cutkosky, M.R.: iSprawl: Design and Tuning for High Speed Autonomous Open Loop Running. International Journal of Robotics Research 25(9), 903–912 (2006)

    Google Scholar 

  24. Grasmeyer, J.M., Keennon, M.T.: Development of the Black Widow Micro Air Vehicle. AIAA Chapter No. 2001-0127 (2001)

    Google Scholar 

  25. Morris, S., Holden, M.: Design of Micro Air Vehicles and Flight Test Validation. Proceeding of the Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers, pp. 153–176 (2000)

    Google Scholar 

  26. Frontiers of Engineering: Reports on Leading Edge Engineering, 2001 NAE Symposium on Frontiers of Engineering, National Academy of Engineering, p. 12 (2002)

    Google Scholar 

  27. Ellington, C.P.: The Aerodynamics of Hovering Flight. Philosophical Transactions of the Royal Society of London 305(1122), 1–181 (1984)

    Article  Google Scholar 

  28. Frampton, K.D., Goldfarb, M., Monopoli, D., Cveticanin, D.: Passive Aeroelastic Tailoring for Optimal Flapping Wings. Proceeding of the Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers, pp. 26–33 (2000)

    Google Scholar 

  29. Jones, K.D., Duggan, S.J., Platzer, M.F.: Flapping-Wing Propulsion for a Micro Air Vehicle. AIAA Chapter No. 2001–0126 (2001)

    Google Scholar 

  30. Jones, K.D., Bradshaw, C.J., Papadopoulos, J., Platzer, M.F.: Improved Performance and Control of Flapping-Wing Propelled Micro Air Vehicles. 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Chapter 2004-0399, Reno, Nevada (January 5–8, 2004)

    Google Scholar 

  31. Lentink, D., Bradshaw, N., Jongerius, S.R.: Novel micro aircraft inspired by insect flight. Comparative Biochemistry and Physiology, Part A 146, S133–S134 (2007)

    Article  Google Scholar 

  32. Waszak, M.R., Jenkins, L.N., Ifju, P.G.: Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle. AIAA Chapter no. 2001–4005 (2001).

    Google Scholar 

  33. Shyy, W.: Computational Modeling for Fluid Flow and Interfacial Transport. Elsevier, Amsterdam, The Netherlands (1994) (revised printing 1997).

    Google Scholar 

  34. Shyy, W., Thakur, S.S., Ouyang, H., Liu, J., Blosch, E.: Computational Techniques for Complex Transport Phenomena. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  35. Shyy, W., Udaykumar, H.S., Rao, M.M., Smith, R.W.: Computational Fluid Dynamics with Moving Boundaries. Taylor & Francis, Washington, DC (1996) (revised printing 1997 & 1998).

    Google Scholar 

  36. Smith, R.W., Shyy, W.: Computational Model of Flexible Membrane Wings in Steady Laminar Flow. AIAA Journal 33(10), 1769–1777 (1995)

    Article  MATH  Google Scholar 

  37. Jenkins D.A., Shyy, W., Sloan, J., Klevebring, F., Nilsson, M.: Airfoil Performance at Low Reynolds Numbers for Micro Air Vehicle Applications. Thirteenth Bristol International RPV/UAV Conference, University of Bristol (1998)

    Google Scholar 

  38. Ifju, P.G., Ettinger, S., Jenkins, D.A., Martinez, L.: Composite Materials for Micro Air Vehicles. Proceeding for the SAMPE Annual Conference, Long Beach CA (May 6–10, 2001)

    Google Scholar 

  39. Jenkins, D.A., Ifju, P.G., Abdulrahim, M., Olipra, S.: Assessment of the Controllability of Micro Air Vehicles. Micro Air Vehicle Conference, Bristol England (April 2001)

    Google Scholar 

  40. Ettinger, S.M., Nechyba, M.C., Ifju, P.G., Waszak, M.: Vision-Guided Flight Stability and Control for Micro Air Vehicles. Proceedings of the IEEE International Conference on Intelligent Robots and Systems 3, 2134–2140 (2002)

    Google Scholar 

  41. Zufferey, J.-C., Klaptocz, A., Beyeler, A., Nicoud, J.-D., Floreano, D.: A 10-gram Vision-based Flying Robot. Advanced Robotics 21(14), 1671–1684 (2007)

    Article  Google Scholar 

  42. Lachat, D., Crespi, A., Ijspeert, A.J.: Boxybot: A Swimming and Crawling Fish Robot Controlled by a Central Pattern Generator. Proceedings of The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2006) 1, 643–648

    Google Scholar 

  43. Georgiadis, C., German, A., Hogue, A., Liu, H., Prahacs, C., Ripsman, A., Sim, R., Torres, L.-A., Zhang, P., Buehler, M., Dudek, G., Jenkin, M., Milios, E.: AQUA: An Aquatic Walking Robot. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004, Sendai, Japan (September 28–October 2, 2004)

    Google Scholar 

  44. Ijspeert, A., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  45. Ayers, J., Davis, J.L., Rudolph, A. (eds.): Neurotechnology for Biomimetic Robots. The MIT Press, pp. 481–509 (2002)

    Google Scholar 

  46. Michelson, R., Helmick, D., Reece, S., Amareno, C.: A Reciprocating Chemical Muscle (RCM) for Micro Air Vehicle “Entomopter” Flight. AUVSI’97, Proceedings of the Association for Unmanned Vehicle Systems International (July 1997)

    Google Scholar 

  47. Watson, J.T., Ritzmann, R.E., Zill, S.N., Pollack, A.J.: Control of obstacle climbing in the cockroach, Blaberus discoidalis: I. Kinematics. Journal of Comparative Physiology 188, 39–53 (2002)

    Article  Google Scholar 

  48. Mueller, T.J. (ed.): Proceedings of the Conference on Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers, Notre Dame University, Indiana (June 5–7, 2000)

    Google Scholar 

  49. Mueller, T.J.: The Influence of Laminar Separation and Transition on Low Reynold’s Number Airfoil Hysteresis. Journal of Aircraft 22, 763–770 (1985)

    Article  Google Scholar 

  50. Pringle, J.W.S.: Insect Flight. Cambridge University Press, Cambridge (1957)

    Google Scholar 

  51. Ritzmann, R.E., Fourtner, C.R., Pollack, A.J.: Morphological and physiological identification of motor neurons innervating flight musculature in the cockroach, Periplaneta Americana. Journal of Experimental Zoology 225, 347–356 (1983)

    Article  Google Scholar 

  52. Boria F.J., Bachmann, R.J., Ifju, P.G., Quinn, R.D., Vaidyanathan, R., Perry, C., Wagener, J.: A Sensor Platform Capable of Aerial and Terrestrial Locomotion. Proceedings of IEEE/RSJ 2005 International Conference on Intelligent Robots and Systems (IROS2005), Edmonton, Alberta, Canada, pp. 2–6 (August 2005)

    Google Scholar 

  53. Lambrecht, B.G.A., Horchler, A.D., Quinn, R.D.: A Small Insect Inspired Robot that Runs and Jumps. Proceeding of the IEEE International Conference on Robotics and Automation (ICRA ’05), Barcelona, Spain (2005)

    Google Scholar 

  54. Procerus Technologies (http://www.procerusuav.com/), Kestrel Installation and Configuration Guide (May 2006)

  55. Bachmann, R.J., Boria, F.J., Ifju, P.G., Quinn, R.D., Kline, J.E., Vaidyanathan, R.: Utility of a Sensor Platform Capable of Aerial and Terrestrial Locomotion. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2005), Monterey California (July, 2005)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Air Force Research Laboratories Munitions Research Directorate (under contracts FA8651-04-C-0234 and FA8651-05-C-0097) and by the Naval Postgraduate School (NPS)/USSOCOM Field Experimentation Cooperative Program. The authors would like to acknowledge the program support directors Dr. David Netzer of the Naval Postgraduate School and Chris Perry and Jeffery Wagner at Us Air Force Research Laboratories for technical and mission planning insights. Dr. Kevin Jones provided assistance in sensor placement and piloting/performance research. Baron Johnson and Daniel Claxton made significant contributions including vehicle design and flight testing. Michael Sytsma, Michael Morton, and the University of Florida MAV group also contributed to the development, testing, and analysis of MALV II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Quinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bachmann, R.J. et al. (2009). A Miniature Vehicle with Extended Aerial and Terrestrial Mobility. In: Floreano, D., Zufferey, JC., Srinivasan, M., Ellington, C. (eds) Flying Insects and Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89393-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89393-6_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89392-9

  • Online ISBN: 978-3-540-89393-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics