Skip to main content

Integration of Endocannabinoid Signaling into the Neural Network Regulating Stress-Induced Activation of the Hypothalamic–Pituitary–Adrenal Axis

  • Chapter
  • First Online:
Behavioral Neurobiology of the Endocannabinoid System

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 1))

Abstract

The evidence that has been gathered to date strongly argues for an inhibitory role of endocannabinoid (ECB) signaling in regulating HPA axis activity. Under basal conditions, ECB signaling appears to be a driving force in the maintenance of low HPA axis activity, as disruption of CB1 receptor activity results in basal hyperactivity of the HPA axis. Under conditions of acute stress, ECB signaling likewise appears to constrain activation of the HPA axis, possibly via both distal regulation of incoming amygdalar inputs and local regulation of excitatory input to CRF neurosecretory cells in the PVN. ECB neurotransmission is, in turn, modulated by stress, possibly acting as either a “gatekeeper” of the HPA axis, or a recovery system aimed at limiting HPA axis activity. Consistently, pharmacological enhancement of ECB signaling attenuates stress-induced HPA axis activity while impairment of CB1 receptor signaling results in an exaggerated cellular and neuroendocrine response to stress. Additionally, under conditions of repeated stress, a progressive increase in limbic 2AG/CB1 receptor signaling contributes to the development and expression of neuroendocrine habituation.

Ultimately, these data demonstrate that the ECB system is likely to be an integral player in the neuronal response and plasticity to stress. The relevance of this relationship has not been fully explored with respect to both normal homeostasis and pathological states characterized by alterations in HPA axis function, but will be a focus of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2AG:

2-Arachidonoylglycerol

ACTH:

Adrenocorticotropic hormone

AEA:

Anandamide

BLA:

Basolateral nucleus of the amygdala

CeA:

Central nucleus of the amygdala

CRF:

Corticotrophin-releasing factor

ECB:

Endocannabinoid

FAAH:

Fatty acid amide hydrolase

GH:

Growth hormone

HPA:

Hypothalamic–pituitary–adrenal

MeA:

Medial amygdala

MGL:

Monoacylglycerol lipase

mPFC:

Medial prefrontal cortex

PAG:

Periaqueductal gray

PVN:

Paraventricular nucleus of the hypothalamus

References

  • Armario A. The hypothalamic–pituitary–adrenal axis: what can it tell us about stressors? CNS Neurol Disord Drug Target. 2006;5:485–501.

    Article  Google Scholar 

  • Aso E, Ozaita A, Valdizan EM et al. BDNF impairment in the hippocampus is related to enhanced despair behavior in CB(1) knockout mice. J Neurochem 2008;105:565–572

    Article  PubMed  CAS  Google Scholar 

  • Bain MJ, Dwyer SM, Rusak B. Restraint stress affects hippocampal cell proliferation differently in rats and mice. Neurosci Lett. 2004;368:7–10.

    Article  PubMed  CAS  Google Scholar 

  • Barna I, Zelena D, Arszovszki AC et al. The role of endogenous cannabinoids in the hypothalamo-pituitary-adrenal axis regulation: in vivo and in vitro studies in CB1 receptor knockout mice. Life Sci. 2004;75:2959–2970.

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Huber R, Nowak N et al. Lesions of the posterior paraventricular thalamus block habituation of hypothalamic–pituitary–adrenal responses to repeated restraint. J Neuroendocrinol. 2002;14:403–410.

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Melck D, Bobrov MY et al. N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J. 2000;351:817–824.

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Ligresti A, Di Marzo V. The endocannabinoid signalling system: biochemical aspects. Pharmacol Biochem Behav. 2005;81:224–238.

    Article  PubMed  CAS  Google Scholar 

  • Cabral GA, Marciano-Cabral F. Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol. 2005;78:1192–1197.

    Article  PubMed  CAS  Google Scholar 

  • Cadas H, di Tomaso E, Piomelli D. Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J Neurosci. 1997;17:1226–1242.

    PubMed  CAS  Google Scholar 

  • Carrier EJ, Kearn CS, Barkmeier AJ et al. Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol. 2004;65:999–1007.

    Article  PubMed  CAS  Google Scholar 

  • Carter RN, Pinnock SB, Herbert J. Does the amygdala modulate adaptation to repeated stress? Neuroscience. 2004;126:9–19.

    Article  PubMed  CAS  Google Scholar 

  • Cole MA, Kalman BA, Pace TW et al. Selective blockade of the mineralocorticoid receptor impairs hypothalamic–pituitary–adrenal axis expression of habituation. J Neuroendocrinol. 2000;12:1034–1042.

    Article  PubMed  CAS  Google Scholar 

  • Cota D, Marsicano G, Tschop M et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest. 2003;112:423–431.

    PubMed  CAS  Google Scholar 

  • Cota D, Steiner MA, Marsicano G et al. Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic–pituitary–adrenal axis function. Endocrinology. 2007;148:1574–1581.

    Article  PubMed  CAS  Google Scholar 

  • Dallman MF, Akana SF, Levin N et al. Corticosteroids and the control of function in the hypothalamo–pituitary–adrenal (HPA) axis. Ann NY Acad Sci. 1994;746:22–31.

    Article  PubMed  CAS  Google Scholar 

  • De Catanzaro D, Gorzalka BB. Postpubertal social isolation and male sexual behavior in rodents: Facilitation or inhibition is species-dependent. Anim Learn Behav. 1979;7:555–561.

    Article  Google Scholar 

  • Deutsch DG, Ueda N, Yamamoto S. The fatty acid amide hydrolase (FAAH). Prostag Leukotr Ess Fatty Acids. 2002;66:201–210.

    Article  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–1949.

    Article  PubMed  CAS  Google Scholar 

  • Di S, Malcher-Lopes R, Halmos KC et al. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003;23:4850–4857.

    PubMed  CAS  Google Scholar 

  • Di S, Malcher-Lopes R, Marcheselli VL et al. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology. 2005;146:4292–4301.

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo V, Melck D, Bisogno T et al. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. 1998;21:521–528.

    Article  PubMed  Google Scholar 

  • Dinh TP, Carpenter D, Leslie FM et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA. 2002;99:10819–10824.

    Article  PubMed  CAS  Google Scholar 

  • Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic–pituitary–adrenal responses to stress. J Neurosci. 1993;13:3839–3847.

    PubMed  CAS  Google Scholar 

  • Doyon C, Denis RG, Baraboi ED et al. Effects of rimonabant (SR141716) on fasting-induced hypothalamic–pituitary–adrenal axis and neuronal activation in lean and obese Zucker rats. Diabetes. 2006;55:3403–3410.

    Article  PubMed  CAS  Google Scholar 

  • Evanson NK, Ulrich-Lai YM, Furay AR et al. (2007) Hypothalamic paraventricular cannabinoid receptor signaling in fast feedback inhibition of the hypothalamic–pituitary–adreanl response to acute restraint stress. Soc Neurosci. Abstr 197.5

    Google Scholar 

  • Felder CC, Glass M. Cannabinoid receptors and their endogenous agonists. Annu Rev Pharmacol Toxicol. 1998;38:179–200.

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev. 2003;83:1017–1066.

    PubMed  CAS  Google Scholar 

  • Fride E, Suris R, Weidenfeld J et al. Differential response to acute and repeated stress in cannabinoid CB1 receptor knockout newborn and adult mice. Behav Pharmacol. 2005;16:431–440.

    Article  PubMed  CAS  Google Scholar 

  • Galiegue S, Mary S, Marchand J et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995;232:54–61.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg AB, Pecoraro NC, van den Heuvel JK et al. (2006) Cannabinoid CB1 receptor blockade rapidly enhances the hormonal response to restraint. Soc Neurosci. Abstr 563.8

    Google Scholar 

  • Gong JP, Onaivi ES, Ishiguro H et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071:10–23.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez S, Manzanares J, Berrendero F et al. Identification of endocannabinoids and cannabinoid CB(1) receptor mRNA in the pituitary gland. Neuroendocrinology. 1999;70:137–145.

    Article  PubMed  CAS  Google Scholar 

  • Gorzalka BB, Hill MN. Cannabinoids, reproduction and sexual behavior. Annu Rev Sex Res. 2006;17:132–161.

    Google Scholar 

  • Gorzalka BB, Hill MN, Hillard CJ. Regulation of endocannabinoid signaling by stress: Implications for stress-related affective disorders. Neurosci Biobehav Rev 2008;32:1152–1160.

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Varga B, Ledent C et al. Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice. Eur J NeuroSci. 2004;19:1906–1912.

    Article  PubMed  CAS  Google Scholar 

  • Hanus L, Abu-Lafi S, Fride E et al. 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci U S A. 2001;98:3662–3665.

    Article  PubMed  CAS  Google Scholar 

  • Hao S, Avraham Y, Mechoulam R et al. Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. Eur J Pharmacol. 2000;392:147–156.

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991;11:563–583.

    PubMed  CAS  Google Scholar 

  • Herman JP, Tasker JG, Ziegler DR et al. Local circuit regulation of paraventricular nucleus stress integration: glutamate-GABA connections. Pharmacol Biochem Behav. 2002;71:457–468.

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front Neuroendocrinol. 2003;24:151–180.

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Ostrander MM, Mueller NK et al. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1201–1213.

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Ho WS, Sinopoli KJ et al. Involvement of the endocannabinoid system in the ability of long-term tricyclic antidepressant treatment to suppress stress-induced activation of the hypothalamic–pituitary–adrenal axis. Neuropsychopharmacology. 2006;31:2591–2599.

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Morrish AC, McLaughlin RJ et al. (2007) Endogenous cannabinoids regulate habituation to stress. Soc Neurosci. Abstr 197.4

    Google Scholar 

  • Hill MN, Carrier EJ, Ho WS et al. Prolonged glucocorticoid treatment decreases cannabinoid CB1 receptor binding in the hippocampus. Hippocampus. 2008;18:221–226.

    Article  PubMed  CAS  Google Scholar 

  • Hillard CJ. Endocannabinoids and vascular function. J Pharmacol Exp Ther. 2000;294:27–32.

    PubMed  CAS  Google Scholar 

  • Hohmann AG, Suplita RL, Bolton NM et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;435:1108–1112.

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC, Mukhopadhyay S. Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem Phys Lipids. 2000;108:53–70.

    Article  PubMed  CAS  Google Scholar 

  • Isbell H, Gorodetzsky CW, Jasinski D et al. Effects of (–) delta-9-tetrahydrocannabinol in man. Psychopharmacology. 1967;11:184–188.

    Article  CAS  Google Scholar 

  • Jaferi A, Bhatnagar S. Corticosterone can act at the posterior paraventricular thalamus to inhibit hypothalamic–pituitary–adrenal activity in animals that habituate to repeated stress. Endocrinology. 2006;147:4917–4930.

    Article  PubMed  CAS  Google Scholar 

  • Kamprath K, Marsicano G, Tang J et al. Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci. 2006;26:6677–6686.

    Article  PubMed  CAS  Google Scholar 

  • Korte SM, Koolhaas JM, Wingfield JC et al. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev. 2005;29:3–38.

    Article  PubMed  Google Scholar 

  • Lamota L, Bermudez-Silva FJ, Marco EM et al. Effects of adolescent nicotine and SR 147778 (Surinabant) administration on food intake, somatic growth and metabolic parameters in rats. Neuropharmacology. 2008;54:194–205.

    Article  PubMed  CAS  Google Scholar 

  • Malcher-Lopes R, Di S, Marcheselli VS et al. Opposing crosstalk between leptin and glucocorticoids rapidly modulates synaptic excitation via endocannabinoid release. J Neurosci. 2006;26:6643–6650.

    Article  PubMed  CAS  Google Scholar 

  • Malcher-Lopes R, Franco A, Tasker JG. Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: A non-genomic anti-inflammatory switch. Eur J Pharmacol. 2008;583:322–339.

    Article  PubMed  CAS  Google Scholar 

  • Manzaneres J, Corchero J, Fuentes JA. Opioid and cannabinoid receptor-mediated regulation of the increase in adrenocorticotropin hormone and corticosterone plasma concentrations induced by central administration of delta(9)-tetrahydrocannabinol in rats. Brain Res. 1999;839:173–179.

    Article  Google Scholar 

  • McEwen BS. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism. 2005;54:20–23.

    Article  PubMed  CAS  Google Scholar 

  • Melia KR, Ryabinin AE, Schroeder R et al. Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. J Neurosci. 1994;14:5929–5938.

    PubMed  CAS  Google Scholar 

  • Moldrich G, Wenger T. Localization of the CB1 cannabinoid receptor in the rat brain. An immunohistochemical study. Peptides. 2000;21:1735–1742.

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–65.

    Article  PubMed  CAS  Google Scholar 

  • Nakazi M, Bauer U, Nickel T et al. Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000;361:80–84.

    Article  Google Scholar 

  • Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron. 2001;29:729–738.

    Article  PubMed  CAS  Google Scholar 

  • Pagotto U, Marsicano G, Fezza F et al. Normal human pituitary gland and pituitary adenomas express cannabinoid receptor type 1 and synthesize endogenous cannabinoids: first evidence for a direct role of cannabinoids on hormone modulation at the human pituitary level. J Clin Endocrinol Metab. 2001;86:2687–2696.

    Article  PubMed  CAS  Google Scholar 

  • Parolaro D. Presence and functional regulation of cannabinoid receptors in immune cells. Life Sci. 1999;65:637–644.

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ et al. Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic–pituitary–adrenal axis. Endocrinology. 2004;145:5431–5438.

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ et al. Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J NeuroSci. 2005;21:1057–1069.

    Article  PubMed  Google Scholar 

  • Pecoraro N, Dallman MF, Warne JP et al. From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol. 2006;79:247–340.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4:873–884.

    Article  PubMed  CAS  Google Scholar 

  • Porter AC, Sauer JM, Knierman MD et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301:1020–1024.

    Article  PubMed  CAS  Google Scholar 

  • Rademacher DJ, Meier SE, Shi L et al. Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology. 2008;54:108–116.

    Article  PubMed  CAS  Google Scholar 

  • Radley JJ, Arias CM, Sawchenko PE. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci. 2006;26:12967–12976.

    Article  PubMed  CAS  Google Scholar 

  • Ross RA. Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol. 2003;140:790–801.

    Article  PubMed  CAS  Google Scholar 

  • Ryberg E, Larsson N, Sjogren S et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:984–986.

    Google Scholar 

  • Schlicker E, Kathmann M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci. 2001;22:565–572.

    Article  PubMed  CAS  Google Scholar 

  • Schulkin J, Gold PW, McEwen BS. Induction of corticotropin-releasing hormone gene expression by glucocorticoids: Implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology. 1998;23:219–243.

    Article  PubMed  CAS  Google Scholar 

  • Steiner MA, Marsicano G, Nestler EJ et al. Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice. Psychoneuroendocrinology. 2008;33:54–67.

    Article  PubMed  CAS  Google Scholar 

  • Succu S, Mascia MS, Sanna F et al. The cannabinoid CB1 receptor antagonist SR 141716A induces penile erection by increasing extra-cellular glutamic acid in the paraventricular nucleus of male rats. Behav Brain Res. 2006;169:274–281.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215:89–97.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Alexander SP, Kendall DA et al. Cannabinoids and PPARalpha signalling. Biochem Soc Trans. 2006;34:1095–1097.

    Article  PubMed  CAS  Google Scholar 

  • Tsou K, Brown S, Sanudo-Pena MC et al. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998;83:393–411.

    Article  PubMed  CAS  Google Scholar 

  • Uchigashima M, Narushima M, Fukaya M et al. Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J Neurosci. 2007;27:3663–3676.

    Article  PubMed  CAS  Google Scholar 

  • Ueda N. Endocannabinoid hydrolases. Prostaglandins Oth Lipid M. 2002;68–69:521–534.

    Article  Google Scholar 

  • Uriguen L, Perez-Rial S, Ledent C et al. Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology. 2004;46:966–973.

    Article  PubMed  CAS  Google Scholar 

  • Van Sickle MD, Duncan M, Kingsley PJ et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–332.

    Article  PubMed  Google Scholar 

  • Vaughan CW, Christie MJ. Retrograde signalling by endocannabinoids. Handbook Exp Pharmacol. 2005;168:367–383.

    Article  CAS  Google Scholar 

  • Viau V, Sawchenko PE. Hypophysiotropic neurons of the paraventricular nucleus respond in spatially, temporally, and phenotypically differentiated manners to acute vs. repeated restraint stress. J Comp Neurol. 2002;445:293–307.

    Article  PubMed  Google Scholar 

  • Wade MR, Degroot A, Nomikos GG. Cannabinoid CB1 receptor antagonism modulates plasma corticosterone in rodents. Eur J Pharmacol. 2006;551:162–167.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Stone E, McEwen BS. Induction and habituation of c-fos and zif/268 by acute and repeated stressors. NeuroReport. 1994;5:1321–1324.

    PubMed  CAS  Google Scholar 

  • Weidenfeld J, Feldman S, Mechoulam R. Effect of the brain constituent anandamide, a cannabinoid receptor agonist, on the hypothalamo–pituitary–adrenal axis in the rat. Neuroendocrinology. 1994;59:110–112.

    Article  PubMed  CAS  Google Scholar 

  • Wenger T, Jamali KA, Juaneda C et al. Arachidonyl ethanolamide (anandamide) activates the parvocellular part of hypothalamic paraventricular nucleus. Biochem Biophys Res Commun. 1997;237:724–728.

    Article  PubMed  CAS  Google Scholar 

  • Wenger T, Fernandez-Ruiz JJ, Ramos JA. Immunocytochemical demonstration of CB1 cannabinoid receptors in the anterior lobe of the pituitary gland. J Neuroendocrinol. 1999;11:873–878.

    Article  PubMed  CAS  Google Scholar 

  • Wenger T, Ledent C, Tramu G. The endogenous cannabinoid, anandamide, activates the hypothalamo–pituitary–adrenal axis in CB1 cannabinoid receptor knockout mice. Neuroendocrinology. 2003;78:294–300.

    Article  PubMed  CAS  Google Scholar 

  • Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002;296:678–682.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Fukaya M, Uchigashima M et al. Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci. 2006;26:4740–4751.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Gorzalka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gorzalka, B.B., Hill, M.N. (2009). Integration of Endocannabinoid Signaling into the Neural Network Regulating Stress-Induced Activation of the Hypothalamic–Pituitary–Adrenal Axis. In: Kendall, D., Alexander, S. (eds) Behavioral Neurobiology of the Endocannabinoid System. Current Topics in Behavioral Neurosciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88955-7_12

Download citation

Publish with us

Policies and ethics