Skip to main content

Programmability of Chemical Reaction Networks

  • Chapter
  • First Online:

Part of the book series: Natural Computing Series ((NCS))

Abstract

Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  Google Scholar 

  2. Arkin AP, Ross J, McAdams HH (1998) Stochastic kinetic analysis of a developmental pathway bifurcation in phage-l Escherichia coli. Genetics 149:1633–1648

    Google Scholar 

  3. Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889

    Article  Google Scholar 

  4. Guptasarma P (1995) Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? Bioessays 17:987–997

    Article  Google Scholar 

  5. Levin B (1999) Genes VII. Oxford University Press, Oxford

    Google Scholar 

  6. McAdams HH, Arkin AP (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci 94:814–819

    Article  Google Scholar 

  7. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1185

    Article  Google Scholar 

  8. Suel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440:545–550

    Article  Google Scholar 

  9. Esparza J, Nielsen M (1994) Decidability issues for Petri nets—a survey. J Inf Process Cybern 3:143–160

    Google Scholar 

  10. Karp RM, Miller RE (1969) Parallel program schemata. J Comput Syst Sci 3(4):147–195

    MATH  MathSciNet  Google Scholar 

  11. Conway JH (1972) Unpredictable iterations. In: Proceedings of the 1972 number theory conference. University of Colorado, Boulder, pp 49–52

    Google Scholar 

  12. Conway JH (1987) Fractran: a simple universal programming language for arithmetic. Springer, New York, chap 2, pp 4–26

    Google Scholar 

  13. Minsky M (1967) Computation: finite and infinite machines. Prentice–Hall, New Jersey

    MATH  Google Scholar 

  14. Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with finite stochastic chemical reaction networks. Nat Comput. doi:10.1007/s11047-008-9067-y

    Google Scholar 

  15. Zavattaro G, Cardelli L (2008) Termination problems in chemical kinetics. In: van Breugel F, Chechik M (eds) CONCUR. Lecture notes in computer science, vol 5201. Springer, Berlin, pp 477–491

    Google Scholar 

  16. Liekens AML, Fernando CT (2006) Turing complete catalytic particle computers. In: Proceedings of unconventional computing conference, York

    Google Scholar 

  17. Angluin D, Aspnes J, Eisenstat D (2006) Fast computation by population protocols with a leader. Technical Report YALEU/DCS/TR-1358, Yale University Department of Computer Science. Extended abstract to appear, DISC 2006

    Google Scholar 

  18. Bennett CH (1982) The thermodynamics of computation—a review. Int J Theor Phys 21(12):905–939

    Article  Google Scholar 

  19. Păun G (1995) On the power of the splicing operation. Int J Comput Math 59:27–35

    Article  MATH  Google Scholar 

  20. Kurtz SA, Mahaney SR, Royer JS, Simon J (1997) Biological computing. In: Hemaspaandra LA, Selman AL (eds) Complexity theory retrospective II. Springer, Berlin, pp 179–195

    Google Scholar 

  21. Cardelli L, Zavattaro G (2008) On the computational power of biochemistry. In: Horimoto K, Regensburger G, Rosenkranz M, Yoshida H (eds) AB. Lecture notes in computer science, vol 5147. Springer, Berlin, pp 65–80

    Google Scholar 

  22. Berry G, Boudol G (1990) The chemical abstract machine. In Proceedings of the 17th ACM SIGPLAN–SIGACT annual symposium on principles of programming languages, pp 81–94

    Google Scholar 

  23. Păun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287:73–100

    Article  MATH  Google Scholar 

  24. Magnasco MO (1997) Chemical kinetics is Turing universal. Phys Rev Lett 78:1190–1193

    Article  Google Scholar 

  25. Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and Turing machines. Proc Natl Acad Sci 88:10983–10987

    Article  MATH  Google Scholar 

  26. Petri CA (1962) Kommunikation mit Automaten. Technical Report Schriften des IMM No 2. Institut für Instrumentelle Mathematik, Bonn

    Google Scholar 

  27. Goss PJE, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc Natl Acad Sci USA 95:6750–6755

    Article  Google Scholar 

  28. Mayr EW (1981) Persistence of vector replacement systems is decidable. Acta Inform 15:309–318

    Article  MATH  MathSciNet  Google Scholar 

  29. Sacerdote GS, Tenney RL (1977) The decidability of the reachability problem for vector addition systems (preliminary version). In: 9th annual symposium on theory of computing, Boulder, pp 61–76

    Google Scholar 

  30. Post EL (1941) On the two-valued iterative systems of mathematical logic. Princeton University Press, New Jersey

    Google Scholar 

  31. Cook M (2005) Networks of relations. PhD thesis, California Institute of Technology

    Google Scholar 

  32. Rosier LE, Yen H-C (1986) A multiparameter analysis of the boundedness problem for vector addition systems. J Comput Syst Sci 32:105–135

    Article  MATH  MathSciNet  Google Scholar 

  33. Skolem T (1923) Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich. Videnskapsselskapets Skrifter. 1. Matematisk-naturvidenskabelig Klasse, 6

    Google Scholar 

  34. Gödel K (1931) Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatschefte Math Phys 38:173–198

    Article  Google Scholar 

  35. Turing A (1936–1937) On computable numbers, with and application to the Entscheidungsproblem. Proc Lond Math Soc 42(2):230–265

    Google Scholar 

  36. Ackermann W (1928) Zum hilbertschen Aufbau der reellen Zahlen. Math Ann 99:118–133

    Article  MATH  MathSciNet  Google Scholar 

  37. Herbrand J (1931) Sur la non-contradiction de l’arithmétique. J Reine Angew Math 166:1–8

    Google Scholar 

  38. Gödel K (1934) On undecidable propositions of formal mathematical systems. In: Davis M (ed) The undecidable. Springer, Berlin, pp 39–74. Lecture notes taken by Kleene and Rosser at Princeton

    Google Scholar 

  39. Church A (1936) An unsolvable problem of elementary number theory. Am J Math 58:345–363

    Article  MathSciNet  Google Scholar 

  40. Péter R (1951) Rekursive funktionen. Akadémiai Kiadó, Budapest

    MATH  Google Scholar 

  41. Gale D (1974) A curious nim-type game. Am Math Mon 81:876–879

    Article  MATH  MathSciNet  Google Scholar 

  42. Minsky ML (1961) Recursive unsolvability of Post’s problem of ‘tag’ and other topics in theory of Turing machines. Ann Math 74:437–455

    Article  MathSciNet  Google Scholar 

  43. Neary T, Woods D (2005) A small fast universal Turing machine. Technical Report NUIM-CS-2005-TR-12, Dept. of Computer Science, NUI Maynooth

    Google Scholar 

  44. Soloveichik D (2008) Robust stochastic chemical reaction networks and bounded tau-leaping. arXiv:0803.1030v1

  45. Cook M (2004) Universality in elementary cellular automata. Complex Syst 15:1–40

    MATH  Google Scholar 

  46. Cook M, Rothemund PWK (2004) Self-assembled circuit patterns. In: Winfree E (ed) DNA computing 9, vol 2943. Springer, Berlin, pp 91–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cook, M., Soloveichik, D., Winfree, E., Bruck, J. (2009). Programmability of Chemical Reaction Networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds) Algorithmic Bioprocesses. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88869-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88869-7_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88868-0

  • Online ISBN: 978-3-540-88869-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics