Skip to main content

Graffiti Detection Using a Time-Of-Flight Camera

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5259))

Abstract

Time-of-Flight (TOF) cameras relate to a very recent and growing technology which has already proved to be useful for computer vision tasks. In this paper we investigate on the use of a TOF camera to perform video-based graffiti detection, which can be thought of as a monitoring system able to detect acts of vandalism such as dirtying, etching and defacing walls and objects surfaces. Experimental results show promising capabilities of the proposed approach, with improvements expected as the technology gets more mature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sacchi, C., Regazzoni, C., Vernazza, G.: A neural network-based image processing system for detection of vandal acts in unmanned railway environments. In: Proc. IEEE Int. Conf. Image Analysis and Processing (ICIAP 2001), pp. 529–534 (2001)

    Google Scholar 

  2. Angiati, D., Gera, G., Piva, S., Regazzoni, C.: A novel method for graffiti detection using change detection algorithm. In: Proc. IEEE Int. Conf. Advanced Video and Signal-Based Surveillance (AVSS 2005), pp. 242–246 (2005)

    Google Scholar 

  3. Canesta inc., www.canesta.com

  4. Pmd technologies, www.pmdtec.com

  5. Mesa imaging, www.mesa-imaging.ch/index.php

  6. 3dv systems, www.3dvsystems.com

  7. Lottner, O., Sluiter, A., Hartmann, K., Weihs, W.: Movement artefacts in range images of time-of-flight cameras. In: International Symposium on Signals, Circuits and Systems (ISSCS 2007), vol. 1, pp. 117–120 (2007)

    Google Scholar 

  8. Göktürk, S., Yalcin, H., Bamji, C.: A time-of-flight depth sensor - system description, issues and solutions. In: Proc. Conf. Computer Vision and Pattern Recognition Workshop (CVPRW 2004), p. 35 (2004)

    Google Scholar 

  9. Falie, D., Buzuloiu, V.: Noise characteristics of 3d time-of-flight cameras. In: International Symposium on Signals, Circuits and Systems (ISSCS 2007) (2007)

    Google Scholar 

  10. Beder, C., Bartczak, B., Koch, R.: A comparison of pmd-cameras and stereo-vision for the task of surface reconstruction using patchlets. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–8 (2007)

    Google Scholar 

  11. Rizzi, A., Voltolini, F., Remondino, F., Girardi, S., Gonzo, L.: Optical measurement techniques for the digital preservation, documentation and analysis of cultural heritage. In: VIII Conference on Optical 3D Measurement Techniques, vol. 2, pp. 16–24 (2007)

    Google Scholar 

  12. Hsu, S., Acharya, S., Rafii, A., New, R.: Performance of a time-of-flight range camera for intelligent vehicle safety applications. In: Advanced Microsystems for Automotive Applications 2006, pp. 205–219 (2006)

    Google Scholar 

  13. Grest, D., Kruger, V., Koch, R.: Single view motion tracking by depth and silhouette information. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 719–729. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Haker, M., Böhme, M., Martinetz, T., Barth, E.: Geometric invariants for facial feature tracking with 3D TOF cameras. In: Proc. IEEE International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, vol. 1, pp. 109–112 (2007)

    Google Scholar 

  15. Göktürk, S., Rafii, A.: An occupant classification system eigen shapes or knowledge-based features. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, p. 57 (2005)

    Google Scholar 

  16. Holte, M., Moeslund, T., Fihl, P.: View invariant gesture recognition using the csem swissranger sr-2 camera (2007)

    Google Scholar 

  17. Craighead, J., Day, B., Murphy, R.: Evaluation of canesta’s range sensor technology for urban search and rescue and robot navigation. In: IEEE Workshop on Safety Security Rescue Robots, Gaithersburg, MD (2006)

    Google Scholar 

  18. Hong, T., Bostelman, R., Madhavan, R.: Obstacle detection using a tof range camera for indoor agv navigation. In: Performance Metrics for Intelligent Systems (PerMIS 2004), Gaithersburg, MD (2004)

    Google Scholar 

  19. Prasad, T., Hartmann, K., Wolfgang, W., Ghobadi, S., Sluiter, A.: First steps in enhancing 3d vision technique using 2d/3d sensors. In: Chum, O., Franc, V. (eds.) 11th Computer Vision Winter Workshop 2006, Czech Society for Cybernetics and Informatics, pp. 82–86 (2006)

    Google Scholar 

  20. Lindner, M., Kolb, A.: Data-fusion of pmd-based distance-information and high-resolution rgb-images. In: International Symposium on Signals, Circuits and Systems (ISSCS), vol. 1, pp. 121–124 (2007)

    Google Scholar 

  21. Hahne, U., Alexa, M.: Combining time-of-flight depth and stereo images without accurate extrinsic calibration. In: Dynamic 3D Imaging Workshop in Conjunction with DAGM (2007)

    Google Scholar 

  22. Knoop, S., Vacek, S., Dillmann, R.: Sensor fusion for 3d human body tracking with an articulated 3d body model. In: Proc. IEEE Int. Conf. on Robotics and Automation, Orlando, Florida (2006)

    Google Scholar 

  23. Yang, Q., Yang, R., Davis, J., Nister, D.: Spatial-depth super resolution for range images. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–8 (2007)

    Google Scholar 

  24. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. Int. Conf. Computer Vision (ICCV 1998), pp. 839–846 (1998)

    Google Scholar 

  25. Radke, R., Andra, S., Al-kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Processing 14, 294–307 (2005)

    Article  MathSciNet  Google Scholar 

  26. Tombari, F., Di Stefano, L., Mattoccia, S., Galanti, A.: Performance evaluation of robust matching measures. In: Proc. 3rd International Conference on Computer Vision Theory and Applications (VISAPP 2008) (2008)

    Google Scholar 

  27. Mittal, A., Ramesh, V.: An intensity-augmented ordinal measure for visual correspondence. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 849–856 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tombari, F., Di Stefano, L., Mattoccia, S., Zanetti, A. (2008). Graffiti Detection Using a Time-Of-Flight Camera. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88458-3_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88457-6

  • Online ISBN: 978-3-540-88458-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics