Skip to main content

GNSS Remote Sensing of the Environment

  • Chapter
  • First Online:
Environmental Monitoring using GNSS

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 2170 Accesses

Abstract

GNSS satellites such as GPS are playing an increasingly crucial role in tracking low earth orbiting (LEO) remote sensing satellites at altitudes below 3000 km with accuracies of better than 10 cm (Yunck et al. 1990). These remote sensing satellites employ a precise global network of GNSS ground receivers operating in concert with receivers onboard the LEO satellites, with all estimating the satellites’ orbits, GPS orbits, and selected ground locations simultaneously (Yunck et al. 1990). In this chapter, we illustrate the role played by GNSS satellites in measuring changes in the Earth’s atmosphere, its gravity field, and surfaces (e.g., ice layer density). These changes are found by measuring refractivity , inter-satellite distances, and reflected signals (i.e., multipath), respectively.

GNSS data provide the opportunity to observe Earth system processes with greater accuracy and detail, as they occur. W.C. Hammond et al. (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.gdgps.net/applications/index.html

  2. 2.

    total electronic contents.

  3. 3.

    via http://www.cosmic.ucar.edu.

  4. 4.

    via http://www.cosmic.ucar.edu

  5. 5.

    via http://www.tacc.cwb.gov.tw.

  6. 6.

    see, e.g., http://www.esa.int/esaCP/SEMV3FO4KKF_Germany_0.html.

  7. 7.

    http://www.csr.utexas.edu/grace/publications/brochure/page11.html

References

  • Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok  R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98(5):735–751. doi:10.1109/JPROC.2009.2034765

    Google Scholar 

  • Anthes RA et al (2004) Application of GPS remote sensing to meteorology and related fields. J Meteorol Soc Jpn 82(1B):259–596

    Article  Google Scholar 

  • Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Meteorol Soc 89(3):313–333. doi:10.1175/BAMS-89-3-313

    Google Scholar 

  • Arras C, Jacobi C, Wickert J, Heise S, Schmidt T (2010) Sporadic E signatures revealed from multi-satellite radio occultation measurements. Adv Radio Sci 8:225–230. doi:10.5194/ars-8-225-2010

  • Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22:379–386

    Article  Google Scholar 

  • Awange JL, Fukuda Y, Takemoto S, Wickert J, Aoyama Y (2004) Analytic solution of GPS atmospheric sounding refraction angles. Earth Planets Space 56(6):573-587

    Google Scholar 

  • Awange JL, Sharifi MA, Baur O, Keller W, Featherstone WE, Kuhn M (2009) GRACE hydrological monitoring of Australia. Current limitations and future prospects. J Spat Sci 54(1):23–36. doi:10.1080/14498596.2009.9635164

    Google Scholar 

  • Barletta V, Sabadini R, Bordoni A (2008) Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophys J Int 172(1):18–30. doi:10.1111/j.1365-246X.2007.03630.x

  • Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by acocunting for leakage effects. J Geophys Res 114(B06407). doi:10.1029/2008JB006239

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of water vapour using global positioning system. J Geophys Res 97:15787–15801

    Google Scholar 

  • Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386

    Article  Google Scholar 

  • Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32(L13806). doi:10.1029/2005GL023109

  • Boehm J, Werl B, and Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406–B02409

    Article  Google Scholar 

  • Boy J-P, Chao B (2005) Precise evaluation of atmospheric loading effects on Earth’s time-variable gravity field. J Geophys Res 110(B08412). doi:10.1029/2002JB002333

  • Bruinsma S, Lemoine J, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45(4):587–601. doi:10.1016/j.asr.2009.10.012

  • Chambers D, Wahr J, Nerem R (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31(L13310). doi:10.1029/2004GL020461

  • Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of apace geodetic data. J Geophys Res 102(B9):20489–20502

    Article  Google Scholar 

  • Cheng CZ, Kuo Y-H, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. EOS Trans Am Geophys Union 87(17):166. doi:10.1029/2006EO170003

    Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modelling errors on estimates of baseline length. Radio Sci 20:1593–1607

    Article  Google Scholar 

  • Egido A, Delas M, Garcia M, Caparrini M (2009) Non-space applications of GNSS-R: from research to operational services. Examples of water and land monitoring systems. Geoscience and Remote Sensing Symposium, IEEE International, IGARSS, Cape Town, pp II-170–II-173

    Google Scholar 

  • Ellett KM, Walker JP, Western AW, Rodell M (2006) A framework for assessing the potential of remote sensed gravity to provide new insight on the hydrology of the Murray-Darling Basin. Aust J Water Res 10(2):89–101

    Google Scholar 

  • Foelsche U, Kirchengast G, Steiner AK (2006) Atmosphere and climate. Studies by occulation methods. Springer, Berlin

    Google Scholar 

  • Foelsche U, Borsche M, Steiner AK, Gobiet M, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2007) Observing upper troposphere-lower stratosphere climate with radio occultation from the CHAMP satellite. Climate Dyn 31:49–65. doi:10.1007/s00382-007-0337-7

    Google Scholar 

  • Gleason S, Hodgart S, Sun Y, Gommenginger C, Mackin S, Adjrad M, Unwin M (2005) Detection and processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing. Geosci Remote Sens IEEE Trans 43(6):1229–1241. doi:10.1109/TGRS.2005.845643

    Google Scholar 

  • Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/community_science/science_highlights/2010/realtimeGPSWhitePaper2010.pdf. Accessed 06 June 2011

  • Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126. doi:10.1029/2011EO150001

    Google Scholar 

  • Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-Resolution water vapor mapping from interferometric radar measurements. Science 283:1297–1299. doi:10.1126/science.283.5406.1297

    Google Scholar 

  • Healey S, Jupp A, Offiler D, Eyre J (2003) The assimilation of radio occultation measurements. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Heidelberg

    Google Scholar 

  • Heise S, Wickert J, Beyerle G, Schmidt T, Reigber C (2006) Global monitoring of tropospheric water vapor with GPS radio occultation aboard CHAMP. Adv Space Res 37(12):2222–2227. doi:10.1016/j.asr.2005.06.066

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008. quasigeoid heights. J Geodesy 85:723–740. doi:10.1007/s00190-011-0482-y

  • Khandu, Awange JL, Wickert J, Schmidt T, Sharifi MA, Heck B, Fleming K (2010) GNSS remote sensing of the Australian tropopause. Clim Change 105(3-4):597–618. doi:10.1007/s10584-010-9894-6

  • Kuo Y-H, Sokolovski SV, Anthens RA, Vandenberghe F (2000) Assimilation of the GPS radio occultation data for numerical weather prediction. Terr Atmos Ocean Sci 11:157–186

    Google Scholar 

  • Kuo Y-H, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS Radio occultation soundings with radiosonde. Geophys Res Lett 32:L05817. doi:10.1029/2004GL021443

  • Larson KM, Small EE, Gutmann ED, Bilich AL, Braun JJ, Zavorotny VU (2008) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405. doi:10.1029/2008GL036013

  • Larson KM,Gutmann ED, Zavorotny VU, Braun JJ, Williams MW, Nievinski FG (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36(17). doi:10.1029/2009GL039430

  • Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New York

    Google Scholar 

  • Lemoine F, Luthcke S, Rowlands D, Chinn D, Klosko S, Cox C (2007) The use of mascons to resolve time-variable gravity from GRACE. In: Tregoning P, Rizos C (eds) Dynamic planet. pp 231–236 Springer, Berlin

    Chapter  Google Scholar 

  • Lowe ST, Zuffada C, Chao Y, Kroger P, Young LE, LaBrecque JL (2002a) 5-cm-Precision aircraft ocean altimetry using GPS reflections. Geophys Res Lett 29(10):1375. doi:10.1029/2002GL014759

    Google Scholar 

  • Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young L, Hajj GA (2002b) First spaceborne observation of an earth-reflected GPS signal. Radio Sci 37(1):1007. doi:10.1029/2000RS002539

    Google Scholar 

  • Luo X (2012) Extending the GPS stochastic model by means of signal quality measures and ARMA processes. Doctoral thesis at the Geodetic Institute, Faculty of Civil Engineering, Geo and Environmental Sciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

    Google Scholar 

  • Luthcke S, Rowlands D, Lemoine F, Klosko S, Chinn D, McCarthy J (2006) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys Res Lett 33:L02402. doi:10.1029/2005GL024846

  • Martín-Neira M (1993) A passive reflectometry and interferometry system (PARIS): application to Ocean Altimetry. ESA J 17(4):331–335

    Google Scholar 

  • McGrat R, Semmler T, Sweeney C, Wang S (2006) Impact of balloon drift errors in radiosonde data on climate statistics. J clim 19(14):3430–3442. doi:10.1175/JCLI3804.1

    Google Scholar 

  • Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication, pp 94-18

    Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246. doi:10.1029/95JB03048

    Google Scholar 

  • Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. groundwater 33(3):425–432. doi:10.1111/j.1745-6584.1995.tb00299.x

  • Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS, GALILEO and augmentation systems. Artech House, Boston

    Google Scholar 

  • Pugh D (2004) Changing sea levels. Effect of tides, weather and climate. Cambridge Univeristy Press, Cambridge

    Google Scholar 

  • Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826. doi:10.1111/j.1365-246X.2004.02328.x

  • Ramillien G, Frappart F, Cazenave A, Güntner A (2005) Time variations of land water storage from an inversion of two years of GRACE geoids [rapid communication]. Earth Planet Sci Lett 235(1–2):283–301. doi:10.1016/j.epsl.2005.04.005

  • Resch GM (1984) Water vapor radiometry in geodetic applications. In: Brunner FK (eds) Geodetic refraction. pp 53–84 Springer, New York

    Chapter  Google Scholar 

  • Rieser D (2008) Comparison of GRACE-derived monthly Surface Mass Variations with Rainfall Data in Australia. MSc thesis. Graz University of Technology

    Google Scholar 

  • Rocken C, Ware R, Hove TV, Solheim F, Alber C, Johnson J, Bevis M, Businger S (1993) Sensing atmospheric water vapour with the Global Positioning System. Geophys Res Lett 20(23):2631–2634. doi:10.1029/93GL02935

    Google Scholar 

  • Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Res Res 35(9):2705–2724. doi:10.1029/1999WR900141

    Google Scholar 

  • Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions—principles and aims. J Geodyn 33(1):3–20. doi:10.1016/S0264-3707(01)00050-3

    Google Scholar 

  • Schmidt T, Wickert J, Beyerle G, Reigber C (2004) Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. J Geophys Res 109:D13105. doi:10.1029/2004JD004566

  • Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmos Chem Phys 5:1473–1488

    Article  CAS  Google Scholar 

  • Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35:L11806. doi:10.1029/2008GL034012

  • Schrama EJO, Visser PNAM (2007) Accuracy assessment of the monthly GRACE geoids based upon a simulation. J Geodesy 81(1):67–80. doi:10.1007/s00190-006-0085-1

    Google Scholar 

  • Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111:D21101. doi:10.1029/2006JD007363

  • Small EE, Larson KM, Braun JJ (2010) Sensing vegetation growth with reflected GPS signals. Geophys Res Lett 37:L12401. doi:10.1029/2010GL042951

  • Steiner AK, Kirchengast G, Foelsche U, Kornblueh L, Manzini E, Bengtsson L (2001) GNSS occultation sounding for climate monitoring. Phys Chem Earth A 26(3):113–124. doi:10.1016/S1464-1895(01)00034-5

    Google Scholar 

  • Swenson S, Wahr J (2002) Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid. J Geophys Res 107(B9):2194. doi: 10.1029/2000JB000024

    Google Scholar 

  • Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39(8):1223. doi:10.1029/2002WR001736

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi:10.1126/science.1099192

    Google Scholar 

  • Thayer GD (1974) An improved equation for the radio refractive index of air. Radio Science 9(10):803–807. doi:10.1029/RS009i010p00803

    Google Scholar 

  • Tiwari V, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi:10.1029/2009GL039401

  • Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. J Geodesy 64:127–159

    Google Scholar 

  • Tregoning P, Watson C, Ramillien G, McQueen H and Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36:L15401. doi:10.1029/2009GL038718

  • Tregoning P, Ramillien G, McQueen H, Zwartz D (2009) Glacial isostatic adjustment and nonstationary signals observed by GRACE. J Geophys Res 114:B06406. doi:10.1029/2008JB006161

  • Tsuda T, Hocke K (2004) Application of GPS occultation for studies of atmospheric waves in the Middle Atmosphere and Ionosphere. In: Anthens et al (Eds) Application of GPS remote sensing to meteorology and related fields. Journal of Meteorological Society of Japan, Vol 82, No 1B, pp 419–426

    Google Scholar 

  • Tsuda T, Heki K, Miyazaki S, Aonashi K, Hirahara K, Tobita M, Kimata F, Tabei T, Matsushima T, Kimura F, Satomura M, Kato T, Naito I (1998) GPS meteorology project of Japan—Exploring frontiers of geodesy. Earth Planets Space 50(10):1–5

    Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res (Solid Earth) 103(B12):30205–30230. doi:10.1029/98JB02844

    Google Scholar 

  • Wahr J, Jayne S, Bryan F (2002) A method of inferring changes in deep ocean currents from satellite measurements of time-variable gravity. J Geophys Res 107(C12):3218. doi:10.1029/2002JC001274

    Google Scholar 

  • Ware H, Fulker D, Stein S, Anderson D, Avery S, Clerk R, Droegmeier K, Kuettner J, Minster B, Sorooshian S (2000) SuomiNet: a real-time national GPS network for atmospheric research and education. Bull Am Meteorol Soc 81:677–694

    Article  Google Scholar 

  • Werth S, Güntner A, Petrovic S, Schmidt R (2009) Integration of GRACE mass variations into a global hydrological model. Earth Planet Sci Lett 27(1–2):166–173. doi:10.1016/j.epsl.2008.10.021

    Google Scholar 

  • Wickert J (2002) Das CHAMP-Radiookkultationsexperiment: Algorithmen, Prozessierungssystem und erste Ergebnisse. Dissertation, Scientific technical report STR02/07, GFZ Potsdam

    Google Scholar 

  • Wickert J (2004) Comparison of vertical refractivity and temperature profiles from CHAMP with radiosonde measurements. Danish Meteorological Institute, Copenhagen

    Google Scholar 

  • Wickert J, Beyerle G, Hajj GA, Schwieger V, Reigber C (2002) GPS radio occultation with CHAMP: atmospheric profiling utilizing the space-based single differencing technique. Geophys Res Lett 29(8):1187. doi:10.1029/2001GL013982

    Google Scholar 

  • Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S, Heise S, Huang C, Jakowski N, Köhler W, Mayer C, Offiler D, Ozawa E, Pavelyev A, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr Atmos Ocean Sci 20:35–50. doi:10.3319/TAO.2007.12.26.01(F3C)

  • Yang D, Zhou Y, Wang Y (2009) Remote sensing with reflected signals. GNSS-R data processing software and test analysis. Inside GNSS, Sept/Oct, pp 40–44

    Google Scholar 

  • Yunck TP (2003) The promise of spaceborne GPS for Earth remote sensing. International Workshop on GPS Meteorology, 14th–17th Jan 2003, Tsukuba, Japan

    Google Scholar 

  • Yunck TP, Wu SC, Wu JT, Thornton CL (1990) Precise tracking of remote sensing satellites with the Global Positioning System. IEEE Trans Geosci Remote Sens 28:108–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L. (2012). GNSS Remote Sensing of the Environment. In: Environmental Monitoring using GNSS. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88256-5_9

Download citation

Publish with us

Policies and ethics