Skip to main content

The Basics of Functional Magnetic Resonance Imaging

  • Chapter
  • First Online:
EEG - fMRI

Abstract

In magnetic resonance imaging (MRI), the signal that is measured usually arises from the nuclei of the tissue’s hydrogen atoms (i.e. protons). A proton possesses a physical property, its spin, which behaves roughly speaking like a compass needle: each spin has a small magnetic dipole moment and aligns in an external magnetic field. If tissue is brought into the strong magnetic field inside the magnetic resonance (MR) scanner bore, spins will align either antiparallel or parallel to the magnetic field B. At the field strengths relevant here, a tiny majority of the spins assume the latter alignment and their magnetic moments add up, giving rise to a net macroscopic magnetisation M which is parallel to B, representing a state of equilibrium (Fig. 1, left). Thus, the existence of this magnetisation inside the magnetic field is an indicator of the presence of protons, and the measurement of M with a certain spatial resolution can be used to construct a proton image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625

    Article  PubMed  CAS  Google Scholar 

  • Barrett T, Brechbiel M, Bernardo M, Choyke PL (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26:235–249

    Article  PubMed  Google Scholar 

  • Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  PubMed  CAS  Google Scholar 

  • Bloch F, Hansen WW, Packard M (1946) Nuclear induction. Phys Rev 69:127.

    Article  Google Scholar 

  • Buxton RB (2001) The elusive initial dip. Neuroimage 13:953–958

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB (2002) Introduction to functional magnetic resonance imaging: principles and techniques. Cambridge University Press, Cambridge

    Google Scholar 

  • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233

    Article  PubMed  Google Scholar 

  • Carmichael DW, Hamandi K, Laufs H, Duncan JS, Thomas DL, Lemieux L (2008) An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity. Magn Reson Imaging 26(7):870–873

    Article  PubMed  Google Scholar 

  • Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687

    Article  PubMed  CAS  Google Scholar 

  • Donahue MJ, Lu H, Jones CK, Edden RA, Pekar JJ, van Zijl PC (2006) Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 56:1261–1273

    Article  PubMed  Google Scholar 

  • Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, Warach S (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency (STAR) sequences: applications to MR angiography. Radiology 192:513–520

    PubMed  CAS  Google Scholar 

  • Haase A (1990) Snapshot FLASH MRI: applications to T1, T2, and chemical-shift imaging. Magn Reson Med 13:77–89

    Article  PubMed  CAS  Google Scholar 

  • Hahn EL (1950) Spin echoes. Phys Rev 80:580–594

    Article  Google Scholar 

  • Hamandi K, Laufs H, Nöth U, Carmichael DW, Duncan JS, Lemieux L (2008) BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage 39:608–618

    Article  PubMed  Google Scholar 

  • Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: A fast imaging method for clinical MR. Magn Reson Med 3:823–833

    Article  PubMed  CAS  Google Scholar 

  • Kader A, Young WL (1996) The effects of intracranial arteriovenous malformations on cerebral hemodynamics. Neurosurg Clin N Am 7:767–781

    PubMed  CAS  Google Scholar 

  • Kida I, Rothman DL, Hyder F (2007) Dynamics of changes in blood flow, volume, and oxygenation: Implications for dynamic functional magnetic resonance imaging calibration. J Cereb Blood Flow Metab 27:690–696

    PubMed  Google Scholar 

  • Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3:164–169

    Article  PubMed  CAS  Google Scholar 

  • Kim SG (1995) Quantification of regional cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping. Magn Reson Med 34:293–301

    Article  PubMed  CAS  Google Scholar 

  • Kuppusamy K, Lin W, Cizek GR, Haacke EM (1996) In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology 201:106–112

    PubMed  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. Neuroimage 19:1463–1476

    Article  PubMed  CAS  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  • Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S, Beany RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(1):27–47

    Article  PubMed  Google Scholar 

  • Lin W, Celik A, Paczynski RP (1999) Regional cerebral blood volume: A comparison of the dynamic imaging and the steady state methods. J Magn Reson Imaging 9(1):44–52

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Golay X, Pekar JJ, van Zijl PC (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50:263–274

    Article  PubMed  Google Scholar 

  • Lu H, Law M, Johnson G, Ge Y, van Zijl PC, Helpern JA (2005) Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med 54:1403–1411

    Article  PubMed  Google Scholar 

  • Lu H, van Zijl PC, Hendrikse J, Golay X (2004) Multiple acquisitions with global inversion cycling (MAGIC): A multislice technique for vascular-space-occupancy dependent fMRI. Magn Reson Med 51:9–15

    Article  PubMed  Google Scholar 

  • Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Luh WM, Wong EC, Bandettini PA, Ward BD, Hyde JS (2000) Comparison of simultaneously measured perfusion and BOLD signal increases during brain activation with T1-based tissue identification. Magn Reson Med 44:137–143

    Article  PubMed  CAS  Google Scholar 

  • Mansfield P (1977) Multiplanar image formation using NMR spin echoes. J Phys C Solid State Phys 10:L55–L58

    Article  CAS  Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20:145–158

    Article  PubMed  Google Scholar 

  • Moseley ME, Chew WM, White DL, Kucharczyk J, Litt L, Derugin N, Dupon J, Brasch RC, Norman D (1992) Hypercarbia-induced changes in cerebral blood volume in the cat: a 1H MRI and intravascular contrast agent study. Magn Reson Med 23:21–30

    Article  PubMed  CAS  Google Scholar 

  • Mugler III JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157

    Article  PubMed  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard L, Smith DF, Vestergaard-Poulsen P, Hansen SB, Gee AD, Gjedde A, Gyldensted C (1998) Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: Comparison with positron emission tomography values. J Cereb Blood Flow Metab 18:425–432

    Article  PubMed  CAS  Google Scholar 

  • Perles-Barbacaru AT, Lahrech H (2007) A new magnetic resonance imaging method for mapping the cerebral blood volume fraction: the rapid steady-state T1 method. J Cereb Blood Flow Metab 27:618–631

    Article  PubMed  Google Scholar 

  • Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  PubMed  CAS  Google Scholar 

  • Schwarzbauer C, Syha J, Haase A (1993) Quantification of regional blood volumes by rapid T1 mapping. Magn Reson Med 29:709–712

    Article  PubMed  CAS  Google Scholar 

  • Schwarzbauer C, Morrissey SP, Haase A (1996) Quantitative magnetic resonance imaging of perfusion using magnetic labeling of water proton spins within the detection slice. Magn Reson Med 35:540–546

    Article  PubMed  CAS  Google Scholar 

  • Scouten A, Constable RT (2007) Applications and limitations of whole-brain MAGIC VASO functional imaging. Magn Reson Med 58:306–315

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  PubMed  CAS  Google Scholar 

  • Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, Gotman J, Pike GB (2005) Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage 28:205–215

    Article  PubMed  Google Scholar 

  • Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22:771–778.

    Article  PubMed  Google Scholar 

  • Tofts P (2003) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, Chichester

    Book  Google Scholar 

  • Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim SG, Menon R, Merkle H, Ogawa S, Salmi R (1993) Imaging at high magnetic fields: Initial experiences at 4 T. Magn Reson Quart 9:259–277

    CAS  Google Scholar 

  • Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577

    Article  PubMed  CAS  Google Scholar 

  • Wansapura JP, Holland SK, Dunn RS, Ball WS (1999) NMR relaxation times in the human brain at 3.0 Tesla. J Magn Reson Imaging 9:531–538

    Article  PubMed  CAS  Google Scholar 

  • Wong EC (2005) Quantifying CBF with pulsed ASL: technical and pulse sequence factors. J Magn Reson Imaging 22:727–731

    Article  PubMed  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249

    Article  PubMed  CAS  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPPS and QUIPSS II). Magn Reson Med 39:702–708

    Article  PubMed  CAS  Google Scholar 

  • Wu WC, Wong EC (2006) Intravascular effect in velocity-selective arterial spin labeling: The choice of inflow time and cutoff velocity. Neuroimage 32:122–128

    Article  PubMed  Google Scholar 

  • Yen YF, Field AS, Martin EM, Ari N, Burdette JH, Moody DM, Takahashi AM (2002) Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 47:921–928

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Deichmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deichmann, R., Nöth, U., Weiskopf, N. (2009). The Basics of Functional Magnetic Resonance Imaging. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87919-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87919-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87918-3

  • Online ISBN: 978-3-540-87919-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics