Skip to main content

Synaptic Rewiring for Topographic Map Formation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Abstract

A model of topographic map development is presented which combines both weight plasticity and the formation and elimination of synapses as well as both activity-dependent and -independent processes. We statistically address the question of whether an activity-dependent process can refine a mapping created by an activity-independent process. A new method of evaluating the quality of topographic projections is presented which allows independent consideration of the development of a projection’s preferred locations and variance. Synapse formation and elimination embed in the network topology changes in the weight distributions of synapses due to the activity-dependent learning rule used (spike-timing-dependent plasticity). In this model, variance of a projection can be reduced by an activity dependent mechanism with or without spatially correlated inputs, but the accuracy of preferred locations will not necessarily improve when synapses are formed based on distributions with on-average perfect topography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willshaw, D., von der Malsburg, C.: How patterned neural connections can be set up by self-organisation. Proc. R. Soc. Lond. B. 194, 431–445 (1976)

    Article  Google Scholar 

  2. Miller, K., Keller, J., Stryker, M.: Ocular dominance column development: analysis and simulation. Science 245, 605–615 (1989)

    Article  Google Scholar 

  3. Goodhill, G.: Topography and ocular dominance: a model exploring positive correlations. Biological Cybernetics 69, 109–118 (1993)

    Article  Google Scholar 

  4. Song, S., Abbott, L.: Cortical development and remapping through spike timing- dependent plasticity. Neuron 32, 339–350 (2001)

    Article  Google Scholar 

  5. Willshaw, D.: Analysis of mouse Epha knockins and knockouts suggests that retinal axons reprogramme target cells. Development 133, 2705–2717 (2006)

    Article  Google Scholar 

  6. Elliott, T., Shadbolt, N.: A neurotrophic model of the development of the retinogeniculocortical pathway induced by spontaneous retinal waves. Journal of Neuroscience 19, 7951–7970 (1999)

    Google Scholar 

  7. Miller, K.: Equivalence of a sprouting-and-retraction model and correlation-based plasticity models of neural development. Neural Computation 10, 529–547 (1998)

    Article  Google Scholar 

  8. Miikkulainen, R., Bednar, J., Choe, Y., Sirosh, J.: Computational Maps in the Visual Cortex. Springer, New York (2005)

    Google Scholar 

  9. Willshaw, D., von der Malsburg, C.: A marker induction mechanism for the establishment of ordered neural mappings. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 287, 203–243 (1979)

    Article  Google Scholar 

  10. Bamford, S., Murray, A., Willshaw, D.: Large developing axonal arbors using a distributed and locally-reprogrammable address-event receiver. In: International Joint Conference on Neural Networks (IJCNN) (2008)

    Google Scholar 

  11. Sperry, R.: Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703–709 (1963)

    Article  Google Scholar 

  12. Ruthazer, E., Cline, H.: Insights into activity-dependent map formation from the retinotectal system. Journal of Neurobiology 59, 134–146 (2004)

    Article  Google Scholar 

  13. Swindale, N.: The development of topography in the visual cortex: a review of models. Network: Computation in Neural Systems 7, 161–247 (1996)

    Article  MATH  Google Scholar 

  14. Grutzendler, J., Kasthuri, N., Gan, W.: Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002)

    Article  Google Scholar 

  15. Young, J., Waleszczyk, W., Wang, C., Calford, M., Dreher, B., Obermayer, K.: Cortical reorganisation consistent with spike timing- but not correlation-dependent plasticity. Nature Neuroscience 10, 887–895 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bamford, S.A., Murray, A.F., Willshaw, D.J. (2008). Synaptic Rewiring for Topographic Map Formation. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics