Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5227))

Included in the following conference series:

Abstract

Most of the current network traffic classification approaches employ single classifier method with achieving lower accuracy under small training set. Different from high flow accuracy, byte accuracy, as an important metric for network traffic classification, is usually ignored by many researchers. To address these two problems, this paper proposes a novel classification algorithm. It combines ensemble learning with cost-sensitive learning, which enables the classification model to achieve high flow accuracy as well as byte accuracy. By evaluating our algorithm with the real 7-day traces collected at the edge of the campus network, the results show that it can averagely obtain flow accuracy of 94% as well as byte accuracy of 81%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sen, S., Spatscheck, O., Wang, D.: Accurate, Scalable In-network Identification of p2p Traffic Using Application Signatures. In: Proceedings of the 13th international conference on World Wide Web, pp. 512–521. ACM, New York (2004)

    Chapter  Google Scholar 

  2. Haffner, P., Sen, S., Spatscheck, O., Wang, D.: ACAS: Automated Construction of Application Signatures. In: Proceedings of the 2005 ACM SIGCOMM workshop on Mining network data, pp. 197–202. ACM, New York (2005)

    Chapter  Google Scholar 

  3. Cache Logic, http://www.cachelogic.com

  4. Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and Discriminating Between Web and Peer to Peer Traffic in the Network Core. In: WWW 2007, Banff, Alberta, Canada (2007)

    Google Scholar 

  5. Erman, J., Mahantix, A., Arlittz, M.: Byte Me: A Case for Byte Accuracy in Traffic Classification. In: MineNet 2007, San Diego, California, USA (2007)

    Google Scholar 

  6. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Drummond, C., Holte, R.C.: Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria. In: Proceeding of 17th International Conference on Machine Learning, pp. 239–246. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  9. Fan, W., Stolfo, S.J., Zhang, J., Chan, P.K.: AdaCost: Misclassification Cost-sensitive Boosting. In: Proceedings of 16th International Conference on Machine Learning, pp. 97–105. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  10. Margineantu, D.D.: Class Probability Estimation and Cost-Sensitive Classification Decisions. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 270–281. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Zadrozny, B., Elkan, C.: Learning and Making Decisions When Costs and Probabilities are Both Unknown. In: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 204–213. ACM, New York (2001)

    Chapter  Google Scholar 

  12. Domingos, P.: MetaCost: A General Method for Making Classifiers Cost-sensitive. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 155–164. ACM, New York (1999)

    Chapter  Google Scholar 

  13. Ribeiro, V.J., Zhang, Z.L., Moon, S., Diot, C.: Small-time Scaling Behavior of Internet Backbone Traffic. Computer Networks: The International Journal of Computer and Telecommunications Networking 48, 315–334 (2005)

    Google Scholar 

  14. Lan, K.C., Heidemann, J.: A Measurement Study of Correlations of Internet Flow Characteristics. Computer Networks: The International Journal of Computer and Telecommunications Networking 50, 46–62 (2006)

    Google Scholar 

  15. Quinlan, J.R.: C4.5: Programs for Machine Learning. The Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  16. Amit, Y., Geman, D.: Shape Quantization and Recognition with Randomized Trees. Neural Computation 9, 1545–1588 (1997)

    Article  Google Scholar 

  17. Zhou, Z.H., Wu, J., Tang, W.: Ensembling Neural Networks: Many Could Be Better Than All. Artificial Intelligence 137, 239–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, H., Che, C., Ma, F., Luo, X., Wang, J. (2008). Improve Flow Accuracy and Byte Accuracy in Network Traffic Classification. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85984-0_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85983-3

  • Online ISBN: 978-3-540-85984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics